Advanced Topics in Stochastic Analysis
- Introduction to Schramm-Loewner evolution

Mondays 12—14 and Thursdays 810 in Endenicher Allee 60 - SemR 1.008

Exercises — Set 9
In this exercise sheet, we will discuss the ingredients to prove that SLE(k) is almost surely generated by
a (continuous transient) curve, for any « € (0,00) \ {8}. Unfortunately, the proof fails for k = 8, as we’ll see.
Theorem. Let k € (0,00) \ {8}. The SLE(k) is almost surely generated by a curve -y.

Notation:

e (gi)i>0 is the Loewner chain associated to the SLE with the following parameterization:
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where a = 2/k, the driving function is W; = —By, and K; are the hulls and H; := H \ K.

go0(2) = z, z € Hy,

o (hs)s>0 is the solution to the reverse LE (this is almost the same as “backward LE”)
—a

atht(z) = m7

ho(z) = z, z € H.

o We denote f(2) == g; '(2) and fi(z) := g; '(z + W,). Note that LE for g, gives an ODE for (f;);>0:

O fr(w) = Z:Lfi{‘(;i), folw) = w, w € H. (1)

e For all (y,t) € [0,00) x [0,1], we denote by V(y,t) := f,(iy).
e We make a dyadic partitioning of ¢ € [0, 1]:
Doy = {k272" |k =0,1,...,2%"}, neN.

We are going to control the values of V' when y = 27" > 0 is small and the time scale is as in Dy,.

Our goal: By |2l Proposition 4.28], the Theorem follows if we show that V is well-defined and continuous
as y \( 0, so that the curve

t) := lim V(y,t) = lim ¢g; ' (iy + W,
v(t) Jim, (y,1) Jim, g, (iy + W)

generating the hulls (Kt)epo,1) is well-defined and f; extends continuously to H.

To establish the goal, it suffices to find a bound function §: [0, c0) — [0, 00) such that h{l(l) 0(e) =0 and
€

[V(y,t) = V(z,s)| <d(x+y+|t—s|), t,s,€[0,1], z,y>0. (2)
By |2l Lemma 4.32], it turns out that to get this estimate, the following ingredients are sufficient:
(a): There exists a sequence (r,)nen such that r, >0, and lim r,, =0, and lim % =0, and
n—oo n—o0 "

(b): |f/(i27™)| < 2"ry, for all t € Dy, and
(c): there exists ¢ € (0,00) such that Wiy, — Wi| < ¢y/n27", for all t € [0,1] and s € [0,2727].

We'll see why in Exercises 6-9 below.



Exercises, Part 1: We establish properties (a), (b), (c) for the SLE.

0.

Check that for fized time ¢ > 0, the function z — f/(z) and the function z — h/(z) have the same law
(but it is not true that the joint law of (f{(z));>0 and the joint law of (h;(z));>0 would be the same!).
Therefore, instead of estimating | f/(z)|, it suffices to estimate |h}(z)].

. Set-up: For fixed z € H, we consider the process Z; = hy(z) — W; solving the SDE

Zo = 2, dZt:—ZidtJr aB,, t>0.
t

(Because t — Im Z; is increasing, this is OK for all times.) This is more useful after the time-change

u(t) :=inf{s > 0| }E(Zz) = ¢}, Then the imaginary part of Zy = Z,(1) 1s exponentially increasing:

Im Z; = Tm(z)e™, d(Re Z;) = —a(Re Z;) dt + |Z;| d B,
where B is standard 1D BM. It is useful to consider

- VA —atRe 7. - -
i, = Re ‘e _ € Re t’ L= /K211
Im Z, Im(z)

which satisfy the SDEs

~ ~ = ~ 1~ 1 K? ~ =
th = —2(1Kt dt + Lt dBt7 st = (QLt — (5 + 2@) Zf) dt + Kt dBt
t

To simplify this, we can write

Xt = sinh jt

- 1 . .
- - d dJ; = — | = 4+ 2a | tanh J; dt + dB;.
L; = cosh Jy, . ¢ (2 a) A ‘

jt := sinh ™! f(t == {

Finally, the process hy = h, () satisfies

By log | ()| = o Be 2 —mZ)* _ (1 - i) —q (1 - (22> = a (2(tanh J)? 1)

| Z,|2 L? cosh J)

Task: Prove that the following process is a martingale:
M, = |h(2)|P (Im Z;)P~% (sin ©;) 2", where O := arg(Z;)

and (p,r) € R? satisfy r2 — (14 2a)r + ap = 0. [Hint: Identify sin ©, with an expression involving J;.]

. Task: Prove that

E [|ﬁ;(z)|P (sin ét)—%] _ (Im(z)>2 exp (_at <p_ 2))

and if p,r > 0, then we have

P DB;(Z)\ > /\] <ATP <IH|12(Z))_2T exp (—at (p - 2)) , A > 0. (3)

. Using the estimate , one can obtain the following estimate for the derivative h} in the original time

parameterization (see [2] Corollary 7.3] and [1, Corollary 5.1]): For every r € [0, 1+ 2a], there exists a
constant c(k,r) € (0,00) such that for all ¢ € [0,1], z € R, and y € (0,1] and A € [e, %]7 we have

P+ = 3 < () s, (@)



where p =p(r) = 2 (1+2a)r —r?) > 0 and

ATPTa, p—= >0,
6(y7)‘): 1+10g)%y7 p7§:07
yPa, p—2 <0.
Recall that a = 2/k. We still have freedom to choose the parameter » > 0. Note that by choosing
r=rg= % = i + %7 which maximises the quantity 2p — =, we have

T 1 4
2p(ro) — ;0 = K70 ((5-1-;) —7'0) = Krg > 2

and xr3 = 2 if and only if x = 8.
Task: Verify that if x € (0,00) \ {8}, then choosing these (9, p(r9)), the estimate gives for x = 0,
y=2"" and A = 2"(1=% with n € N is large enough and o € (0, 1-— m) small enough,

P |:|h2(127n)| > 2n(17a)} < C2fn(2+5)’ (5)
for some ¢ > 0. [NB: There are two different cases: £ < 8 and x > 8]

4. Task: Using the dyadic partitioning D, for ¢ € [0,1], show that implies that for any « small
enough, there exists a random variable C' such that almost surely, C' < co and

G2 < 02"~ teD,,, neN.
5. Task: Conclude that all properties (a), (b), (c) indeed hold.

Exercises, Part 2: Why do properties (a), (b), (c) imply our goal?
Let’s begin by arguing backwards: Let t € [0,1], s € [0,272"] and 0 < x,y < 27" and write
[fiGy) = fers )] < |fuiy) — (27 + [Fu(27") = frrs (27 + | firs(277) = fras (i) (6)

6. Task: Estimate the middle term in @ in terms of sup |f/(i2~™)|, by using the ODE for fi.
w€E[t,t+s]

7. Task: Estimate the first term in @ in terms of sup \ft’(w)|, with a sum over j =n,n+1,....
vE[277,277F1]

(The third term can be estimated similarly.)
8. Tools: Using property (b), the ODE for f;, and Gronwall’s Area theorem, one can show that
|f1 (127" + Wi g-20)| < €827r,,, tek2™ (k+1)27%"], k=0,1,...,27°" -1, neN

Using Koebe distortion theorem, one can show that for any conformal map ¢ on H, we have

lz—

' (w)| < 1447

w]
(=), Im(z),Im(w) >y > 0.
Task: Using these facts and property (c), prove that there exists 8 > 0 such that
1fi(27")] < VP2, te0,1], neN,

and furthermore,
|f1(iy)| < ce®V2mr,,, tel0,1], yel[27",27""], neN. (7)

9. Task: Conclude using that all terms in the expression @ have the desired bound, so (2) holds.
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