Advanced Topics in Stochastic Analysis

- Introduction to Schramm-Loewner evolution

Mondays 12-14 and Thursdays 8-10 in Endenicher Allee 60 - SemR 1.008

Exercises – Set 9

In this exercise sheet, we will discuss the ingredients to prove that $SLE(\kappa)$ is almost surely generated by a (continuous transient) curve, for any $\kappa \in (0, \infty) \setminus \{8\}$. Unfortunately, the proof fails for $\kappa = 8$, as we'll see.

Theorem. Let $\kappa \in (0, \infty) \setminus \{8\}$. The $SLE(\kappa)$ is almost surely generated by a curve γ .

Notation:

• $(g_t)_{t\geq 0}$ is the Loewner chain associated to the SLE with the following parameterization:

$$\partial_t g_t(z) = \frac{a}{g_t(z) - W_t}, \qquad g_0(z) = z, \qquad z \in H_t,$$

where $a = 2/\kappa$, the driving function is $W_t = -B_t$, and K_t are the hulls and $H_t := \mathbb{H} \setminus K_t$.

• $(h_s)_{s\geq 0}$ is the solution to the reverse LE (this is almost the same as "backward LE")

$$\partial_t h_t(z) = \frac{-a}{h_t(z) - W_t}, \qquad h_0(z) = z, \qquad z \in \mathbb{H}.$$

• We denote $f_t(z) := g_t^{-1}(z)$ and $\hat{f}_t(z) := g_t^{-1}(z + W_t)$. Note that LE for g_t gives an ODE for $(f_t)_{t \geq 0}$:

$$\partial_t f_t(w) = \frac{-a f_t'(w)}{w - W_t}, \qquad f_0(w) = w, \qquad w \in \mathbb{H}.$$
 (1)

- For all $(y,t) \in [0,\infty) \times [0,1]$, we denote by $V(y,t) := \hat{f}_t(iy)$.
- We make a dyadic partitioning of $t \in [0, 1]$:

$$\mathcal{D}_{2n} := \{ k2^{-2n} \mid k = 0, 1, \dots, 2^{2n} \}, \quad n \in \mathbb{N}.$$

We are going to control the values of V when $y = 2^{-n} > 0$ is small and the time scale is as in \mathcal{D}_{2n} .

Our goal: By [2] Proposition 4.28], the Theorem follows if we show that V is well-defined and continuous as $y \searrow 0$, so that the curve

$$\gamma(t) := \lim_{y \searrow 0} V(y, t) = \lim_{y \searrow 0} g_t^{-1} (iy + W_t)$$

generating the hulls $(K_t)_{t\in[0,1]}$ is well-defined and f_t extends continuously to $\overline{\mathbb{H}}$.

To establish the goal, it suffices to find a bound function $\delta \colon [0,\infty) \to [0,\infty)$ such that $\lim_{\epsilon \searrow 0} \delta(\epsilon) = 0$ and

$$|V(y,t) - V(x,s)| \le \delta(x+y+|t-s|), \qquad t,s, \in [0,1], \quad x,y > 0.$$
 (2)

By 2 Lemma 4.32, it turns out that to get this estimate, the following ingredients are sufficient:

- (a): There exists a sequence $(r_n)_{n\in\mathbb{N}}$ such that $r_n>0$, and $\lim_{n\to\infty}r_n=0$, and $\lim_{n\to\infty}\frac{\sqrt{n}}{\log r_n}=0$, and
- **(b):** $|\hat{f}'_t(i 2^{-n})| \leq 2^n r_n$, for all $t \in \mathcal{D}_{2n}$, and
- (c): there exists $c \in (0, \infty)$ such that $|W_{t+s} W_t| \le c\sqrt{n} \, 2^{-n}$, for all $t \in [0, 1]$ and $s \in [0, 2^{-2n}]$.

We'll see why in Exercises 6-9 below.

Exercises, Part 1: We establish properties (a), (b), (c) for the SLE.

- 0. Check that for fixed time $t \geq 0$, the function $z \mapsto \hat{f}'_t(z)$ and the function $z \mapsto h'_t(z)$ have the same law (but it is not true that the joint law of $(\hat{f}'_t(z))_{t\geq 0}$ and the joint law of $(h'_t(z))_{t\geq 0}$ would be the same!). Therefore, instead of estimating $|\hat{f}'_t(z)|$, it suffices to estimate $|h'_t(z)|$.
- 1. **Set-up:** For fixed $z \in \mathbb{H}$, we consider the process $Z_t = h_t(z) W_t$ solving the SDE

$$Z_0 = z,$$
 $dZ_t = -\frac{a}{Z_t} dt + dB_t,$ $t \ge 0.$

(Because $t\mapsto \operatorname{Im} Z_t$ is increasing, this is OK for all times.) This is more useful after the time-change $\iota(t):=\inf\{s\geq 0\mid \frac{\operatorname{Im} Z_s}{\operatorname{Im}(z)}=e^{at}\}$. Then the imaginary part of $\tilde{Z}_t:=Z_{\iota(t)}$ is exponentially increasing:

$$\operatorname{Im} \tilde{Z}_t = \operatorname{Im}(z)e^{at}, \qquad \operatorname{d}(\operatorname{Re} \tilde{Z}_t) = -a(\operatorname{Re} \tilde{Z}_t) \operatorname{d}t + |\tilde{Z}_t| \operatorname{d}\tilde{B}_t,$$

where \tilde{B} is standard 1D BM. It is useful to consider

$$\tilde{K}_t := \frac{\operatorname{Re} \tilde{Z}_t}{\operatorname{Im} \tilde{Z}_t} = \frac{e^{-at} \operatorname{Re} \tilde{Z}_t}{\operatorname{Im}(z)}, \qquad \qquad \tilde{L}_t := \sqrt{\tilde{K}_t^2 + 1}$$

which satisfy the SDEs

$$d\tilde{K}_t = -2a\tilde{K}_t dt + \tilde{L}_t d\tilde{B}_t, \qquad d\tilde{L}_t = \left(\frac{1}{2}\tilde{L}_t - \left(\frac{1}{2} + 2a\right)\frac{\tilde{K}_t^2}{\tilde{L}_t}\right) dt + \tilde{K}_t d\tilde{B}_t.$$

To simplify this, we can write

$$\tilde{J}_t := \sinh^{-1} \tilde{K}_t \implies \begin{cases} \tilde{K}_t = \sinh \tilde{J}_t \\ \tilde{L}_t = \cosh \tilde{J}_t, \end{cases} \quad \text{and} \quad d\tilde{J}_t = -\left(\frac{1}{2} + 2a\right) \tanh \tilde{J}_t dt + d\tilde{B}_t.$$

Finally, the process $\tilde{h}_t := h_{\iota(t)}$ satisfies

$$\partial_t \log |\tilde{h}_t'(z)| = a \frac{(\operatorname{Re} \tilde{Z}_t)^2 - (\operatorname{Im} \tilde{Z}_t)^2}{|\tilde{Z}_t|^2} = a \left(1 - \frac{2}{\tilde{L}_t^2}\right) = a \left(1 - \frac{2}{(\cosh \tilde{J}_t)^2}\right) = a \left(2(\tanh \tilde{J}_t)^2 - 1\right)$$

Task: Prove that the following process is a martingale:

$$\tilde{M}_t = |\tilde{h}_t'(z)|^p (\operatorname{Im} \tilde{Z}_t)^{p-\frac{r}{a}} (\sin \tilde{\Theta}_t)^{-2r}, \quad \text{where} \quad \tilde{\Theta}_t := \arg(\tilde{Z}_t)$$

and $(p,r) \in \mathbb{R}^2$ satisfy $r^2 - (1+2a)r + ap = 0$. [Hint: Identify $\sin \tilde{\Theta}_t$ with an expression involving \tilde{J}_t .]

2. Task: Prove that

$$\mathbb{E}\left[|\tilde{h}_t'(z)|^p \left(\sin \tilde{\Theta}_t\right)^{-2r}\right] = \left(\frac{\mathrm{Im}(z)}{|z|}\right)^{-2r} \exp\left(-at\left(p - \frac{r}{a}\right)\right)$$

and if $p, r \geq 0$, then we have

$$\mathbb{P}\left[|\tilde{h}_t'(z)| \ge \lambda\right] \le \lambda^{-p} \left(\frac{\operatorname{Im}(z)}{|z|}\right)^{-2r} \exp\left(-at\left(p - \frac{r}{a}\right)\right), \qquad \lambda > 0.$$
 (3)

3. Using the estimate (3), one can obtain the following estimate for the derivative h'_t in the original time parameterization (see [2] Corollary 7.3] and [1] Corollary 5.1]): For every $r \in [0, 1 + 2a]$, there exists a constant $c(\kappa, r) \in (0, \infty)$ such that for all $t \in [0, 1]$, $x \in \mathbb{R}$, and $y \in (0, 1]$ and $\lambda \in [e^6, \frac{1}{y}]$, we have

$$\mathbb{P}\left[|h_t'(x+iy)| \ge \lambda\right] \le c\lambda^{-p} \left(\frac{y}{|x+iy|}\right)^{-2r} \delta(y,\lambda),\tag{4}$$

where $p = p(r) = \frac{1}{a} \left(\left(1 + 2a \right) r - r^2 \right) \ge 0$ and

$$\delta(y,\lambda) = \begin{cases} \lambda^{-p + \frac{r}{a}}, & p - \frac{r}{a} > 0, \\ 1 + \log \frac{1}{\lambda y}, & p - \frac{r}{a} = 0, \\ y^{p - \frac{r}{a}}, & p - \frac{r}{a} < 0. \end{cases}$$

Recall that $a=2/\kappa$. We still have freedom to choose the parameter $r\geq 0$. Note that by choosing $r=r_0=\frac{1+4a}{4}=\frac{1}{4}+\frac{2}{\kappa}$, which maximises the quantity $2p-\frac{r}{a}$, we have

$$2p(r_0) - \frac{r_0}{a} = \kappa r_0 \left(\left(\frac{1}{2} + \frac{4}{\kappa} \right) - r_0 \right) = \kappa r_0^2 \ge 2$$

and $\kappa r_0^2 = 2$ if and only if $\kappa = 8$.

Task: Verify that if $\kappa \in (0, \infty) \setminus \{8\}$, then choosing these $(r_0, p(r_0))$, the estimate (4) gives for x = 0, $y = 2^{-n}$, and $\lambda = 2^{n(1-\alpha)}$, with $n \in \mathbb{N}$ is large enough and $\alpha \in (0, 1 - \frac{2}{2p(r_0) - r_0/a})$ small enough,

$$\mathbb{P}\left[|h'_t(i2^{-n})| \ge 2^{n(1-\alpha)}\right] \le c \, 2^{-n(2+\varepsilon)},\tag{5}$$

for some $\varepsilon > 0$. [NB: There are two different cases: $\kappa < 8$ and $\kappa > 8$.]

4. Task: Using the dyadic partitioning \mathcal{D}_{2n} for $t \in [0,1]$, show that (5) implies that for any α small enough, there exists a random variable C such that almost surely, $C < \infty$ and

$$|h'_t(i2^{-n})| \le C 2^{n(1-\alpha)}, \qquad t \in \mathcal{D}_{2n}, \quad n \in \mathbb{N}.$$

5. Task: Conclude that all properties (a), (b), (c) indeed hold.

Exercises, Part 2: Why do properties (a), (b), (c) imply our goal?

Let's begin by arguing backwards: Let $t \in [0,1], s \in [0,2^{-2n}]$ and $0 < x,y \le 2^{-n}$ and write

$$|\hat{f}_t(iy) - \hat{f}_{t+s}(ix)| \le |\hat{f}_t(iy) - \hat{f}_t(i2^{-n})| + |\hat{f}_t(i2^{-n}) - \hat{f}_{t+s}(i2^{-n})| + |\hat{f}_{t+s}(i2^{-n}) - \hat{f}_{t+s}(ix)|. \tag{6}$$

- 6. Task: Estimate the middle term in (6) in terms of $\sup_{u \in [t,t+s]} |\hat{f}'_t(i2^{-n})|$, by using the ODE (1) for f_t .
- 7. **Task:** Estimate the first term in (6) in terms of $\sup_{v \in [2^{-j}, 2^{-j+1}]} |\hat{f}'_t(iv)|$, with a sum over $j = n, n+1, \ldots$ (The third term can be estimated similarly.)
- 8. **Tools:** Using property (b), the ODE (1) for f_t , and Gronwall's Area theorem, one can show that $|f_t'(i2^{-n} + W_{k\,2^{-2n}})| \le e^6 2^n r_n, \qquad t \in [k\,2^{-2n}, (k+1)\,2^{-2n}], \quad k = 0, 1, \dots, 2^{-2n} 1, \quad n \in \mathbb{N}.$

Using Koebe distortion theorem, one can show that for any conformal map φ on \mathbb{H} , we have

$$|\varphi'(w)| \le 144^{\frac{|z-w|}{y}+1} |\varphi'(z)|, \quad \operatorname{Im}(z), \operatorname{Im}(w) \ge y > 0.$$

Task: Using these facts and property (c), prove that there exists $\beta > 0$ such that

$$|\hat{f}'_t(i2^{-n})| \le ce^{\beta\sqrt{n}}2^n r_n, \qquad t \in [0,1], \quad n \in \mathbb{N},$$

and furthermore,

$$|\hat{f}'_t(iy)| \le ce^{\beta\sqrt{n}} 2^n r_n, \quad t \in [0,1], \quad y \in [2^{-n}, 2^{-n+1}], \quad n \in \mathbb{N}.$$
 (7)

9. Task: Conclude using (7) that all terms in the expression (6) have the desired bound, so (2) holds.

References

- [1] Antti Kemppainen. Schramm-Loewner evolution. SpringerBriefs in Mathematical Physics, 2017. http://wiki.helsinki.fi/display/mathphys/sle-book
- [2] Gregory Lawler. Conformally Invariant Processes in the Plane. American Mathematical Society, 2005. http://pi.math.cornell.edu/~lawler/book.ps