Advanced Topics in Stochastic Analysis

- Introduction to Schramm-Loewner evolution

Mondays 12-14 and Thursdays 8-10 in Endenicher Allee 60 - SemR 1.008

Exercises – Set 6

1. Let $h: \overline{\mathbb{H}} \to \mathbb{R}$ be a bounded, continuous function, which is harmonic on \mathbb{H} . Show that

$$h(z) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\text{Im}(z)}{|z - u|^2} h(u) \, du, \tag{1}$$

and the harmonic conjugate of h is

$$\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\operatorname{Re}(z-u)}{|z-u|^2} h(u) \, \mathrm{d}u + \text{constant.}$$
 (2)

2. Let $(g_t)_{t\geq 0}$ be a Loewner chain, that is, the solution to

$$\partial_t g_t(z) = \frac{2}{g_t(z) - W_t}, \qquad z \in H_t := \{ w \in \mathbb{H} \mid t < \tau_w \}, \qquad (LE)$$

$$g_0(z) = z, \qquad z \in H_0 = \mathbb{H},$$

where $W: [0, \infty) \to \mathbb{R}$ is the driving function and $\tau_w = \inf\{s \ge 0 \mid \liminf_{u \nearrow s} |g_u(w) - W_u| = 0\}.$

(a) Show that for all $z \in H_t$, we have

$$\partial_t \operatorname{Im}(g_t(z)) = \frac{-2 \operatorname{Im}(g_t(z))}{|g_t(z) - W_t|^2}$$

and $t \mapsto \operatorname{Im}(g_t(z))$ is strictly decreasing.

(b) Show that for all $z \in H_t$, we have

$$\partial_t \operatorname{Re}(g_t(z)) = \frac{2 \operatorname{Re}(g_t(z) - W_t)}{|g_t(z) - W_t|^2}.$$

Fix T>0 and set $M(W):=\sup_{s\in[0,T]}|W_s|$. Show that $t\mapsto \operatorname{Re}(g_t(z))$ is strictly increasing (resp. decreasing) on $[0,T]\ni t$ when $\operatorname{Re}(z)>M(W)$ (resp. $\operatorname{Re}(z)<-M(W)$).

(c) Fix T > 0. Let $(h_s)_{s \in [0,T]}$ be the solution to the backward LE

$$\partial_s h_s(w) = \frac{-2}{h_s(w) - W_{T-s}}, \qquad h_0(w) = w, \qquad w \in \mathbb{H}.$$

Show that $s \mapsto \text{Im}(h_s(w))$ is strictly increasing. Check that, if $z := h_T(w)$, then $h_{T-t}(w) = g_t(z)$ is the solution to LE with initial condition $g_0(z) = z$.

- 3. Fix $\kappa > 0$. Let $(g_t)_{t \geq 0}$ be an $\mathrm{SLE}(\kappa)$, i.e., the random Loewner chain with driving process $W_t = \sqrt{\kappa} B_t$, where B is the standard 1D BM. Let $(K_t)_{t \geq 0}$ be the associated hulls and $(\mathcal{F}_t)_{t \geq 0}$ the natural filtration. Show that the following properties hold:
 - (a) **Scaling:** For all $\lambda > 0$, we have $(\lambda K_{\lambda^{-2}t})_{t \geq 0} = (K_t)_{t \geq 0}$ in distribution.
 - (b) Conformal Markov property: For all $s \ge 0$, we have $(\hat{K}_{s,t})_{t \ge 0} = (K_t)_{t \ge 0}$ in distribution and $(\hat{K}_{s,t})_{t \ge 0}$ is independent of \mathcal{F}_s , where

$$\hat{K}_{s,t} := \overline{g_s(K_{s+t} \setminus K_s)} - W_s.$$

- (c) Strong conformal Markov property: For any almost surely finite stopping time τ , we have $(\hat{K}_{\tau,t})_{t\geq 0} = (K_t)_{t\geq 0}$ in distribution and $(\hat{K}_{\tau,t})_{t\geq 0}$ is independent of \mathcal{F}_{τ} .
- (d) Reflection symmetry: We have $(m(K_t))_{t\geq 0}=(K_t)_{t\geq 0}$ in distribution, where $m(z):=-\overline{z}$.