Advanced Topics in Stochastic Analysis

- Introduction to Schramm-Loewner evolution

Mondays 12-14 and Thursdays 8-10 in Endenicher Allee 60 - SemR 1.008

Exercises – Set 1

- 1. For $z = x + iy \in \mathbb{C}$, with $x, y \in \mathbb{R}$, define $e^z = e^{x + iy} := e^x(\cos y + i\sin y)$.
 - (a) Find the modulus, argument, real part, and imaginary part of e^z .
 - (b) Prove that if $z, w \in \mathbb{C}$, then $e^{z+w} = e^z e^w$.
 - (c) Prove that $z \mapsto e^z$ is holomorphic on the whole \mathbb{C} and its complex derivative equals e^z .
 - (d) Prove that $z \mapsto e^z$ is a bijection from $\{z \in \mathbb{C} \mid 0 \le \text{Im}(z) < 2\pi\}$ to $\mathbb{C} \setminus \{0\}$.
- 2. Define $\log z := \log |z| + \mathfrak{i} \arg(z)$, for all $z \in \mathbb{C} \setminus (-\infty, 0] = \{z \in \mathbb{C} \mid -\pi < \arg(z) < \pi\}$ (so we have chosen a branch of the logarithm function).
 - (a) Prove that $z \mapsto \log z$ is holomorphic on $\mathbb{C} \setminus (-\infty, 0]$ and its complex derivative equals 1/z.
 - (b) What is the image of $\mathbb{C} \setminus (-\infty, 0]$ under this map?
- 3. Let $f: U \to \mathbb{C}$ be holomorphic. Show that the function $g(z) := \overline{f(\overline{z})}$ is also holomorphic, for all $\{z \in \mathbb{C} \mid \overline{z} \in U\}$. Find the derivative of g.
- 4. Calculate the integral

$$\int_{\partial B(0,1)} \frac{e^z}{z(z-2)} \mathrm{d}z,$$

(where the contour $\partial B(0,1)$ is oriented counterclockwise).

5. Let $f: U \to \mathbb{C}$ be holomorphic in a neighborhood of the closed disc $\overline{B(z_0, r)}$. Prove that

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt.$$

6. Show that the stereographic projection of $(x,y,z) \in S^2 := \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$

$$p\colon (x,y,z)\mapsto \left(\frac{x}{1-z},\frac{y}{1-z},0\right),$$

is a smooth and bijective map $S^2 \setminus \{e_n\} \to \mathbb{R}^2$, where $e_n = (0,0,1) \in S^2$ is the North Pole, and $\mathbb{R}^2 = \{(x,y,0) \mid x,y \in \mathbb{R}\} \subset \mathbb{R}^3$ is the Equatorial Plane.

Topologically, the image of p can be seen as $\hat{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$, where we identify $p(e_n) = \infty$ and $\mathbb{R}^2 \approx \mathbb{C}$. This is called the *Riemann sphere*. It is a complex manifold. Can you find coordinate charts for it?