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Abstract

This course will get you introduced to stochastic processes, the theory of time-dependent
random phenomena. You learn to mathematically model and analyze, for instance, particle
and population flows using Markov processes and unpredictable time instants using Poisson
processes. You are assumed to be familiar with basic notions of matrix algebra (e.g. [Str06])
and calculus (e.g. [AE21]), and basic concepts of probability, which are necessary for the
treatment of stochastic processes, for instance as in the freely downloadable books [GS97,
Dur12]. Other useful lecture notes related to the contents of the present course are, e.g.,
[LPW08, Les20] — see also the textbooks [Wil91, Kal21] some more advanced topics.

Most parts of these notes are directly based on the older notes [Les20] by the first author
(LL). Any mistakes introduced in this new version are due to the second author (EP).
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What is a stochastic process?
Roughly speaking, the word “stochastic” means “random” (unknown, modelled by a mathe-

matical model), and the word “process” means something “evolving in time” (for example move-
ment of particles, stock prices, evolution of some population, spread of a disease, data in the
internet, a machine learning algorithm, etc.). The majority of this course will focus on a few
prototypical mathematical models for random phenomena — which are, admittedly, oversimpli-
fications, but still have proven to be extremely useful in modelling a plethora of phenomena.

The first of these is the simple model of a Markov chain; starting from Chapter 1, we will
discuss basic theory, examples, and variants of Markov chains. Another very useful model espe-
cially for waiting times and queueing theory is the Poisson process (Chapters 8–9). Branching
processes discussed in Chapter 7 are widely used, for example, as population models. In the end
of the course, we will also learn basics of Markov chains in continuous time (Chapters 10–11)
and some algorithmic sampling, “Monte Carlo,” methods (Chapter 12).
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1 Markov chains and stochastic models

A finite-state Markov chain is a stochastic (random) process which moves from state x to state
y with probability P (x, y), independently of its past states. The state space (tilajoukko) is
denoted by S = {x1, x2, . . . , xn}, and for now it is assumed to be a finite set with cardinality
(size) ∣S∣ = n ∈ N = {1,2, . . .}. The collection of transition probabilities1

P = {P (x, y) ∶ x, y ∈ S}

is called the transition matrix (siirtymämatriisi). The transition matrix is a square matrix of
size ∣S∣ × ∣S∣, with rows and columns indexed by the possible states x, y ∈ S. Being probabilities,
the entries of the transition matrix must satisfy

0 ≤ P (x, y) ≤ 1, for all x, y ∈ S,

and because the Markov chain certainly moves to some state, each row-sum is equal to 1 by the
law of total probability: for the x:th row, we have

∑
y ∈S

P (x, y) = 1, for all x ∈ S. (1.1)

Note that we can also allow the Markov chain to move back to the same state (or, “stay put”)
with probability P (x,x). This means that the system does not change at that time step.

Reminder. In general, a probability distribution (todennäköisyysjakauma) on S is a function
µ ∶ S → [0,1] such that the law of total probability holds:

∑
y ∈S

µ(y) = 1.

In the context of Markov chains, we will usually interpret probability distributions as row-vectors
µ = (µ(y) ∶ y ∈ S) indexed by the states y ∈ S. For example, (P (x, y) ∶ y ∈ S) for fixed x. ♣

1.1 Markov property

Definition. An S-valued stochastic process (random sequence) X = (X0,X1,X2, . . .) is
a (time-homogeneous) Markov chain (Markov-ketju) with state space S and transition
matrix P if X is “conditionally independent of the past,” i.e.,

P (Xt+1 = y ∣ Xt = x, Ht−) = P (x, y), (1.2)

for all states x, y ∈ S, all times t ≥ 0, and for all events Ht− = {X0 = x0, . . . ,Xt−1 = xt−1}
such that P (Xt = x, Ht−) > 0.

In words, the next state of a Markov chain depends on its past history only via its current
state, and previous states do not have any statistical relevance when predicting the future.

Reminder. For two events A and B such that P (B) > 0, the conditional probability (ehdollinen
todennäköisyys) of A given the event B is

P (A ∣ B) = P (A ∩B)
P (B)

= P (A, B)
P (B)

,

where the symbol “∩” means “and,” i.e., P (A ∩ B) = P (A, B) = P (A and B). (Similarly, the
symbol “∪” means “or,” i.e., P (A ∪B) = P (A or B).) ♣

1As is conventional and for better readability, we will use the notation P (x, y) instead of the more usual
notation Px,y for the matrix element of a matrix P at its x:th row and y:th column.
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Equation (1.2) is called Markov property (Markov-ominaisuus) (after the Russian mathe-
matician Andrey Markov (1856-1922)). The Markov property can be defined analogously also
for stochastic processes with continuous time parameter and infinite state spaces (Chapter 5).
The class of general Markov processes includes several important stochastic models such as
Poisson processes, Random walks, and Brownian motions, some of which will be discussed later.

The following fundamental result tells that the past history Ht− may be ignored in (1.2).
The idea is that the right-hand side of (1.2) only depends on x, y, and the transition matrix P .

Theorem 1.1 (Markov property). For any (finite-state, time-homogeneous) Markov chain
X = (X0,X1,X2, . . .) with transition matrix P , we have

P (Xt+1 = y ∣ Xt = x) = P (x, y), (1.3)

for all times t ≥ 0 and for all states x, y ∈ S such that P (Xt = x) > 0.

(The proof can be skipped at the first reading. It uses basic probability tools.)

Proof. Let us denote the joint probability mass function of the random variables X0, . . . ,Xt as

ft(x0, . . . , xt−1, xt) = P (X0 = x0, . . . , Xt−1 = xt−1, Xt = xt).

Then, the conditional probability of the event {Xt+1 = y} given the event {Xt = x} and the
history Ht− = {X0 = x0, . . . , Xt−1 = xt−1} can be written as

P (Xt+1 = y ∣ Xt = x, Ht−) =
P (Xt+1 = y, Xt = x, Ht−)

P (Xt = x, Ht−)

= ft+1(x0, . . . , xt−1, x, y)
ft(x0, . . . , xt−1, x)

,

and the Markov property (1.2) can be rephrased as

ft+1(x0, . . . , xt−1, x, y)
ft(x0, . . . , xt−1, x)

= P (x, y).

By multiplying both sides of the above equation by ft(x0, . . . , xt−1, x), and then summing both
sides over all possible past states, we find that

∑
x0,...,xt−1 ∈S

ft+1(x0, . . . , xt−1, x, y) = P (x, y) ∑
x0,...,xt−1 ∈S

ft(x0, . . . , xt−1, x). (1.4)

By the law of total probability, the left side of (1.4) equals P (Xt = x, Xt+1 = y) and the right
side equals P (x, y) ⋅ P (Xt = x). Hence, we see that

P (Xt = x, Xt+1 = y) = P (x, y) ⋅ P (Xt = x),

and the claim follows by dividing both sides above by P (Xt = x).

1.2 Transition matrix and transition diagram

The structure of a Markov chain is usually best illustrated visually by a transition diagram. The
transition diagram (siirtymäkaavio) of a transition matrix P and the corresponding Markov
chain is a directed graph with node set being the state space S and link set comprising the
ordered node pairs (x, y) such that P (x, y) > 0. The transition diagram is usually viewed as a
weighted graph by setting the weight of a link to be the corresponding transition probability.

Let us next investigate three examples which can be modeled using a Markov chain. More
examples will be discussed in the exercise sessions and later chapters.
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Example 1.2 (Weather model). The summer weather of day t ∈ N0 = {0,1,2, . . .} in Espoo can
be modeled using a stochastic process in state space S = {1,2}, where

state ’1’ = ’cloudy’ and state ’2’ = ’sunny’.

(Note that this model is not, of course, very realistic. However, for learning mathematical
concepts it is much better to first look at very simple “toy” examples.)

It is assumed that a cloudy day is followed by a sunny day with probability p = 0.2, and that
a sunny day is followed by a cloudy day with probability q = 0.5, independently of the past days.
The states of the weather model can be represented as a Markov chain X = (X0,X1, . . .) with
transition matrix

P = [1 − p p
q 1 − q] = [

0.8 0.2
0.5 0.5

]

and transition diagram

1 21 − p

p

q

1 − q

Let us assume that Monday (day t = 0) is cloudy. Then the weather model predicts Tuesday
to be cloudy with probability P (1,1) = 1 − p and sunny with probability P (1,2) = p, so that

P (X1 = 1 ∣ X0 = 1) = 1 − p and P (X1 = 2 ∣ X0 = 1) = p.

The probability that it is cloudy also on Wednesday is obtained by conditioning on the possible
states of Tuesday’s weather, in the following manner. (This is a very useful trick!)

Reminder. Using the law of total probability, for today’s weather Xt at day t ≥ 1, we have

P (Xt = 1) = ∑
x ∈ {1,2}

P (Xt = 1, Xt−1 = x)

= ∑
x ∈ {1,2}

P (Xt = 1 ∣ Xt−1 = x) ⋅ P (Xt−1 = x)

= P (Xt = 1 ∣ Xt−1 = 1) ⋅ P (Xt−1 = 1) + P (Xt = 1 ∣ Xt−1 = 2) ⋅ P (Xt−1 = 2).

♣

Applying this to t = 2 with the initial condition X0 = 1 gives

P (X2 = 1 ∣ X0 = 1) = P (X2 = 1 ∣ X1 = 1, X0 = 1) ⋅ P (X1 = 1 ∣ X0 = 1)
+ P (X2 = 1 ∣ X1 = 2, X0 = 1) ⋅ P (X1 = 2 ∣ X0 = 1)

= P (1,1) ⋅ P (1,1) + P (2,1) ⋅ P (1,2)
= (1 − p)2 + pq.

Therefore, Wednesday is predicted to be a cloudy day with probability (1 − p)2 + pq = 0.740. ∎

Does this seem like a practical model? Well, it is mathematically simple, and one can
compute predictions via matrix multiplication. For long-time predictions it would be better
to use a computer, as we will see soon. However, one can also use the powerful theory of
Markov chains to simplify the computations significantly. The key is the Markov property (1.2)
(conditional independence property from the past). See Theorem 1.5.

The following, more complicated example is typical in applications related to industrial
engineering and management. More examples of similar kind are available in the book [Kul16].
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Example 1.3 (Inventory model). Katiskakauppa.com Oyj sells laptops in a store which is open
Mon–Sat during 10–18. The inventory is managed using the following policy. Every Saturday
at 18:00 a sales clerk counts the number of laptops in stock. If this number is less than two,
sufficiently many new laptops are ordered so that next Monday morning there will five laptops in
stock. The demand for new laptops during a week is predicted to be Poisson Poi(λ) distributed
with mean λ = 3.5. Customers finding an empty stock at an instant of purchase go to buy their
laptops elsewhere. We develop a Markov chain to model the state of the inventory2.

Let Xt be a random variable describing the number of laptops in stock on Monday 10:00
during week t ∈ N0 = {0,1,2, . . .}. Denote by Dt a random variable modeling the demand of
laptops during the corresponding week. Because Dt is Poi(λ)-distributed, we know that

P (Dt = k) =
⎧⎪⎪⎨⎪⎪⎩

e−λ λk

k! , k ≥ 0,
0, k < 0.

(1.5)

The number of laptops in stock in the end of week t equals max(Xt −Dt,0). If Xt −Dt ≥ 2, then
no laptops are ordered during the weekend and hence Xt+1 =Xt −Dt. Otherwise, a new order is
placed and Xt+1 = 5. Therefore, we have

Xt+1 =
⎧⎪⎪⎨⎪⎪⎩

Xt −Dt, if Xt −Dt ≥ 2,
5, otherwise.

Hence, the state space of the random process X = (X0,X1, . . .) is S = {2,3,4,5}. If we assume
that the demand for new laptops during a week is independent of the demands of other weeks,
then it follows that X is a Markov chain.

Let us next determine the transition probabilities P (i, j). Consider first the case where
i = 2 and j = 2, which corresponds to the event that the number of laptops in stock is 2 in the
beginning and in the end of week t. This event takes place if and only if the demand during
week t equals Dt = 0. Because the demand during week t is independent of past demands (and
hence also on the past inventory states), it follows using the Poisson distribution that

P (2,2) = P (Xt+1 = 2 ∣ Xt = 2, Ht−)
= P (Dt = 0 ∣ Xt = 2, Ht−)
= P (Dt = 0)
= e−λ,

for all events Ht− = {X0 = x0, . . . , Xt−1 = xt−1}. Indeed, a transition from any state i to a state
j ∈ {2,3,4} corresponds to an event Dt = i − j, and hence

P (i, j) = P (Xt+1 = j ∣ Xt = i, Xt−1, . . . , X0)
= P (Xt −Dt = j ∣ Xt = i, Xt−1, . . . , X0)
= P (i −Dt = j ∣ Xt = i, Xt−1, . . . , X0)
= P (Dt = i − j), for all i ∈ {2,3,4,5} and j ∈ {2,3,4}.

Using the Poisson distribution, we can compute the transition probabilities P (i, j) for columns
j = 2,3,4. Let us next determine the entries for j = 5. If i ∈ {2,3,4}, such a transition corresponds
to replenishing the stock by ordering new laptops, that is, Xt −Dt ≤ 1. Hence, we have

P (i,5) = P (Xt+1 = 5 ∣ Xt = i, Xt−1, . . . ,X0)
= P (Xt −Dt ≤ 1 ∣ Xt = i, Xt−1, . . . ,X0)
= P (i −Dt ≤ 1 ∣ Xt = i, Xt−1, . . . ,X0)
= P (Dt ≥ i − 1), for all i ∈ {2,3,4}.

2You may skip this example in this section for the first reading. It will be elaborated further in Chapter 3.
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Finally, we need the value P (5,5). A transition from state i = 5 to state j = 5 occurs in two
cases: either there is no demand during week t, or the demand is 4 or more. Therefore,

P (5,5) = P (Xt+1 = 5 ∣ Xt = 5, Xt−1, . . . , X0)
= P (Dt = 0) + P (Dt ≥ 4).

By computing the probabilities of Dt from the Poisson distribution (1.5), we may write the
transition matrix as

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.03 0 0 0.97
0.11 0.03 0 0.86
0.18 0.11 0.03 0.68
0.22 0.18 0.11 0.49

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that the rows and columns of P are indexed using the set S = {2,3,4,5}. The corresponding
transition diagram is

32

5

4

0.97

0.03

0.86

0.03

0.11 0.11
0.03

0.68

0.18

0.22
0.18

0.11

0.49

∎

Markov chains encountered in applications in science and technology can have huge state
spaces. The state space of the following example contains billions of nodes and grows all the
time. (In Section 5 we will consider models for Markov chains with infinite state spaces.)

Example 1.4 (Web page ranking). A web search for a given search string usually matches
thousands of web pages, so an important question is how to select the most relevant matches
to display for the user. The founders of Google developed for this purpose an algorithm called
PageRank, which is defined as follows3.

Consider a directed graph where the nodes consist of all web pages in the world, and links
correspond to hyperlinks between the pages. Denote the set of nodes by S (state space), and
define the adjacency matrix of the graph as a square matrix A with entries

A(x, y) =
⎧⎪⎪⎨⎪⎪⎩

1, if there is a link from x to y,

0, otherwise.
(1.6)

3This example will be elaborated further in the exercise sessions.
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Then, define a transition matrix on state space S by the formula4

Pc(x, y) = c
1

n
+ (1 − c) A(x, y)

∑z ∈S A(x, z)
,

where n = ∣S∣ is the number of nodes and constant c ∈ [0,1] is called a damping factor. The
“PageRank” π(x) of node x is the probability that a Markov chain with transition matrix P is
found in state x after long time (t→∞). Whether or not this definition makes sense is not at all
trivial. In Section 2, we will learn to recognize when such a limiting probability is well defined,
and we also learn to compute the probability.

The Markov chain of the PageRank algorithm can be interpreted as a surfer browsing the
web by randomly selecting hyperlinks. At times, the surfer gets bored and restarts the browsing
by selecting a web pages uniformly at random. The damping factor can be interpreted as the
probability of the surfer getting bored. ∎

1.3 Time-dependent distributions

The (time-dependent) distribution ((hetkittäinen) (tila)jakauma) of a Markov chain describes its
behavior in a finite time-horizon. It can be handily computed using Theorem 1.5.

Definition. The distribution (jakauma) of Markov chain X = (X0,X1,X2, . . .) at time
instant t ≥ 0 is the probability distribution of the random variable Xt and is denoted by

µt(x) = P (Xt = x), x ∈ S.

The distribution µ0 is called the initial distribution (alkujakauma) of the Markov chain.

The distribution µt at time t is a row-vector with elements indexed by the possible states x ∈ S.
Therefore, we can multiply it from the right by the transition matrix P as in Equation (1.7).

▷ Note that the initial state X0 where the Markov chain X starts can be random, or deter-
ministic (known). The initial distribution gives the probabilities for X0 to be in a given
initial state x ∈ S, that is, the probabilities

µ0(x) = P (X0 = x), x ∈ S.

For example, µ0 could be determined from some data collected about the phenomenon
one wants to model, and the time-evolution would then be determined by only the initial
distribution µ0 and the transition matrix P , according to Theorem 1.5 below.

▷ In Example 1.2, the initial distribution corresponding to the deterministic initial stateX0 = 1
(today is cloudy) equals the Dirac distribution (Dirac-jakauma) at state ’1’:

µ0(1) = P (X0 = 1) = 1 and µ0(2) = P (X0 = 2) = 0.

This can be written as a row-vector µ0 = [1,0].

▷ Note that the law of total probability holds at all times:

∑
x ∈S

µt(x) = 1, t ≥ 0.

4The formula is valid for graphs where the outdegree deg(x) = ∑z A(x, z) of every node x is nonzero. When
this condition is not met (for example the real web graph), the algorithm needs to be modified, for example by
first removing all nodes with zero outdegree.
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The probability that the Markov chain is in state y at time instant t ≥ 1 can be computed
by conditioning on the state at time instant t − 1 according to

P (Xt = y) = ∑
x ∈S

P (Xt−1 = x) ⋅ P (Xt = y ∣ Xt−1 = x).

By applying (1.3) from Theorem 1.1, the above equation can be written as

µt(y) = ∑
x ∈S

µt−1(x) ⋅ P (x, y), t ≥ 1. (1.7)

When the distributions µt and µt−1 are interpreted as row-vectors indexed by the state space S,
we may express the above equation briefly as

µt = µt−1 ⋅ P. (1.8)

This observation leads to the following important result.

Theorem 1.5 (Time-dependent distribution). The distribution µt of any (time-
homogeneous) Markov chain X = (X0,X1,X2, . . .) at an arbitrary time instant t ≥ 0 can
be computed from the initial distribution µ0 using the formula

µt = µ0 ⋅ P t, (1.9)

where P t is the t:th power of the transition matrix P .

Proof. We prove the claim (1.9) by mathematical induction. The claim is obviously true for
t = 0 because P 0 is by definition the identity matrix. If the claim is true for some time instant
t ≥ 0, then by Equation (1.8) and the associativity of matrix multiplication, it follows that

µt+1 = µt ⋅ P = (µ0 ⋅ P t) ⋅ P = µ0 ⋅ (P t ⋅ P ) = µ0 ⋅ P t+1,

and hence, the claim also holds for time instant t+1. Thus, according to the induction principle,
the claim (1.9) holds for all t ≥ 0.

Example 1.6 (Weather model). Let us predict the weather in Otaniemi using the Markov chain
in Example 1.2. Assume that it is cloudy on Monday (day t = 0). What is the probability that
Wednesday is cloudy in Otaniemi? What about Saturday?

The initial distribution corresponding to the deterministic initial state X0 = 1 equals the
Dirac distribution at state ’1’, which can be written as a row-vector µ0 = [1,0]. According
to (1.9), the weather distribution of Wednesday can be computed using the formula

µ2 = µ0 ⋅ P 2,

so that

[µ2(1), µ2(2)] = [1, 0] ⋅ [
0.8 0.2
0.5 0.5

]
2

= [0.740, 0.260].

Hence, Wednesday is cloudy with probability 0.740, which is the same number that was found
by the manual computation in Example 1.2. Analogously, the distribution of the weather on
Saturday can be obtained as µ5 = µ0P 5, so that

[µ5(1), µ5(2)] = [1, 0] ⋅ [
0.8 0.2
0.5 0.5

]
5

= [0.715, 0.285].

We will study long-term behavior of a similar model as t→∞ in Section 3 (Example 3.4). ∎
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1.4 Many-step transition probabilities

The entry P (x, y) of the transition matrix gives the probability of moving from state x to state
y during one time step. The following result shows that P t(x, y) gives the probability of moving
from state x to state y during exactly t time steps.

Theorem 1.7. The probability that (time-homogeneous) Markov chain X = (X0,X1, . . .)
moves from state x to state y during t time steps can be computed using the formula

P (Xt = y ∣ X0 = x) = P t(x, y), for all x, y ∈ S, (1.10)

where P t(x, y) is the entry of the t:th power of the transition matrix corresponding to row
x and column y.

Proof. We prove the claim (1.10) by mathematical induction. The claim is true at time instant
t = 0 because the identity matrix P 0 = I satisfies

P 0(x, y) = I(x, y) = δx(y) =
⎧⎪⎪⎨⎪⎪⎩

1, if x = y,
0, if x ≠ y.

If the claim is true for some time instant t ≥ 0, then by conditioning on all the possible states
of Xt and applying the induction hypothesis P (Xt = z ∣ X0 = x) = P t(x, z) and the Markov
property (1.2) we find that

P (Xt+1 = y ∣ X0 = x) = ∑
z ∈S

P (Xt+1 = y ∣ Xt = z, X0 = x) ⋅ P (Xt = z ∣ X0 = x)

= ∑
z ∈S

P (z, y) ⋅ P t(x, z)

= ∑
z ∈S

P t(x, z) ⋅ P (z, y) = P t+1(x, y).

Hence, the claim also holds for time instant t + 1. Thus, according to the induction principle,
the claim (1.10) holds for all t ≥ 0.

Example 1.8 (Holiday weather). Onninen family has booked a two-day holiday package worth
1900 EUR to a Scottish paradise island. A travel agent offers an insurance at a price of 300 EUR
which gives your money back if both days are cloudy. The weather at the destination today is
sunny, and the first travel day is after 14 days. Should the Onninen family buy the insurance,
when we assume that the weather at the destination follows the Markov chain in Example 1.2?

We use the weather model to compute the probability P (X14 = 1, X15 = 1) that both days
are cloudy. By conditioning on the state X14 and applying the initial condition X0 = 2, we find
using (1.10) (and a computer) from Theorem 1.7 that

P (X14 = 1, X15 = 1) = P (X14 = 1) ⋅ P (X15 = 1 ∣ X14 = 1)
= P (X15 = 1 ∣ X14 = 1) ⋅ P (X14 = 1 ∣ X0 = 2)
= P (1,1) ⋅ P 14(2,1)
= 0.571.

The expected net cost of the holiday using the travel insurance is hence

300 EUR + (1 − 0.571) ⋅ 1900 EUR = 1151 EUR,

so that travel insurance appears to be a good investment. ∎
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1.5 Path probabilities

The initial distribution µ0 and the transition matrix P of a Markov chain X determine the
probabilities all possible finite trajectories (that is, paths in S that the Markov chain can take).
The following result tells how these can be computed for each given trajectory.

Theorem 1.9. For any (time-homogeneous) Markov chain X = (X0,X1,X2, . . .) with
transition matrix P and for any time instant t ≥ 1, we have

P (X0 = x0, X1 = x1, . . . ,Xt = xt) = µ0(x0) ⋅ P (x0, x1)⋯P (xt−1, xt), (1.11)

where µ0(x0) = P (X0 = x0) is the initial distribution.

(The proof is similar to the earlier ones, and can be skipped at the first reading.)

Proof. We prove the claim (1.11) by mathematical induction. The claim is true at time instant
t = 1 by definition of conditional probability:

P (X0 = x0, X1 = x1) = P (X1 = x1 ∣ X0 = x0) ⋅ P (X0 = x0) = P (x0, x1) ⋅ µ0(x0).

To proceed by induction, assume that (1.11) is true for some t ≥ 1, and denote the event that
the trajectory of the Markov chain up to time t equals a particular list of states (x0, . . . , xt) in
S by At = {X0 = x0, . . . , Xt = xt}. Then, by noting that5 At+1 = At ∩{Xt+1 = xt+1}, we find that

P (At+1) = P (At+1 ∣ At) ⋅ P (At) = P (Xt+1 = xt+1 ∣ At) ⋅ P (At).

Furthermore, the Markov property (1.2) implies that

P (Xt+1 = xt+1 ∣ At) = P (Xt+1 = xt+1 ∣ Xt = xt,At−1) = P (xt, xt+1).

By combining these two equations and then applying the induction hypothesis, it follows that

P (At+1) = P (Xt+1 = xt+1 ∣ At) ⋅ P (At)
= P (xt, xt+1) ⋅ P (At)
= µ0(x0) ⋅ P (x0, x1)⋯P (xt−1, xt)P (xt, xt+1),

which shows that the claim (1.11) also holds for time instant t + 1. Thus, according to the
induction principle, the claim (1.11) holds for all t ≥ 1.

1.6 Occupancy of states

It is often interesting to estimate how often a given state occurs for the Markov chain in the
long run. The expected value of these occurrences can be measured in terms of their occupancy,
or frequency. These are collected in the occupancy matrix of the Markov chain.

To analyze frequencies of states, we employ the following common notation.

▷ The indicator (indikaattori) random variable of an event A is a binary random variable
1|(A) such that

1|(A) =
⎧⎪⎪⎨⎪⎪⎩

1, if event A occurs,

0, otherwise.
(1.12)

5Here, we use the common notation for intersections of events, so At+1 = {X0 = x0, . . . , Xt = xt, Xt+1 = xt+1} =

{X0 = x0} ∩ ⋯ ∩ {Xt = xt} ∩ {Xt+1 = xt+1} = At ∩ {Xt+1 = xt+1}. (So the symbol “∩” means “and.”)
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Reminder. The expectation of the indicator random variable of an arbitrary event A equals

E (1|(A)) = 0 ⋅ P (1|(A) = 0) + 1 ⋅ P (1|(A) = 1)
= P (1|(A) = 1)
= P (A). (1.13)

♣

▷ The number of times that a given state y occurs in a trajectory (X0, . . . ,Xt−1) realized by
the Markov chain at its first t steps is a random integer

Nt(y) =
t−1
∑
s = 0

1|(Xs = y). (1.14)

We also call Nt(y) the number of visits (vierailujen lukumäärä) to state y by Markov chain
X during its first t time steps. From (1.12) we see that this is just counting with weight
one the times s ≥ 0 when Xs = y, and with weight zero the times s ≥ 0 when Xs is in some
other state than y.

▷ The (relative) frequency ((suhteellinen) esiintyvyys) of the state y is

Nt(y)
t

= 1

t

t−1
∑
s = 0

1|(Xs = y). (1.15)

▷ The occupancy time (odotusarvoinen esiintyvyys) of state y for initial state x is

Gt(x, y) = E (Nt(y) ∣ X0 = x).

In the literature, Gt(x, y) is also called Green’s function, due to its relation to potential
theory [LPW08].

The square matrix Gt with rows and columns indexed by the states x, y ∈ S is called the
occupancy matrix (esiintyvyysmatriisi) of the first t states of the Markov chain.

Theorem 1.10 (Occupancy matrix ). The occupancy matrix of (time-homogeneous)
Markov chain X = (X0,X1, . . .) can be computed from powers of the transition matrix
P using the formula

Gt =
t−1
∑
s = 0

P s. (1.16)

(The proof can be skipped at the first reading. It uses basic probability tools.)

Proof. Using (1.13) and linearity of the expectation, the number of visits (1.14) to y by the
Markov chain X has expected value

E (Nt(y)) = E (
t−1
∑
s = 0

1|(Xs = y)) =
t−1
∑
s = 0

E (1|(Xs = y)) =
t−1
∑
s = 0

P (Xs = y).

With initial condition X0 = x, because P (Xs = y ∣ X0 = x) = P s(x, y) due to (1.10) in Theo-
rem 1.7, we see that

Gt(x, y) = E (Nt(y) ∣ X0 = x) =
t−1
∑
s = 0

P (Xs = y ∣ X0 = x) =
t−1
∑
s = 0

P s(x, y),

which is an entry-by-entry representation of the matrix equation (1.16).
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Example 1.11 (Weather model). Let us predict the expected number of cloudy days during a
week starting with a sunny day, using the model of Example 1.2.

The requested quantity is the entry G7(2,1) of the occupancy matrix G7 at time t = 7.
Applying (1.16) from Theorem 1.10 (and a computer), we find that

G7 = [
1 0
0 1
] + [0.8 0.2

0.5 0.5
] + [0.8 0.2

0.5 0.5
]
2

+ ⋯ + [0.8 0.2
0.5 0.5

]
6

= [5.408 1.592
3.980 3.020

] .

According to the prediction, the expected number of cloudy days is hence G7(2,1) = 3.980. ∎
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2 Markov chains in the long run

In the previous lecture, we learned to compute the time-dependent distributions µt of a Markov
chain with given initial distribution µ0 using the formula µt = µ0 ⋅ P t (Theorem 1.5). When
looking at a very long time-horizon, it is natural to ask the following questions:

1. Do the time-dependent distributions µt have a limit as t→∞ (in a sense detailed below)?

2. Does such a limit, if exists, depend on the initial distribution µ0?

3. How can a limit be computed in practise?

We will answer these questions for Markov chains on finite state spaces in this chapter, and
return to them in the case of countably infinite state spaces in Chapter 5.

2.1 Invariant (i.e., stationary) and limiting distributions

Consider a Markov chain X = (X0,X1,X2, . . .) on finite state space S with time-dependent
distribution

µt(x) = P (Xt = x), x ∈ S.

Definition. Starting from a given initial distribution µ0, if the limit

lim
t→∞

µt(x) = µ∞(x), for all x ∈ S,

exists, then we say that µ∞ is the limiting distribution (rajajakauma) of the Markov chain
started at the initial distribution µ0. (Note that µ∞ is always a probability distribution
for finite state spaces S, but not necessarily for infinite state spaces (Chapter 5).)

Let us emphasize that the realizations of the random sequence (X0,X1,X2, . . .) do not
in general converge to any fixed point in S. Instead, the limit describes a statistical equilib-
rium (tilastollinen tasapaino) where the Markov chain will settle in the long run6.

In applications, one is usually interested in computing the limiting distribution. It turns out
that any limiting distribution is invariant under the dynamics of the Markov chain (Theorem 2.2).

Definition. A probability distribution π = (π(x) ∶ x ∈ S) is called an invariant distri-
bution (tasapainojakauma) of a transition matrix P and the corresponding Markov chain
X = (X0,X1,X2, . . .) if it satisfies the balance equations (tasapainoyhtälöt)

∑
x ∈S

π(x) ⋅ P (x, y) = π(y), for all y ∈ S, (2.1)

or in matrix form (with π interpreted as a row-vector indexed by y ∈ S),

π ⋅ P = π. (2.2)

Such a distribution π is also called a stationary distribution (stationaarinen jakauma).

6For mathematically oriented readers, let us note that this is usually expressed mathematically in the form

Xt
(d)
Ð→X∞, which means that the random sequence (X0,X1,X2, . . .) “converges in distribution” towards a random

variable X∞ which is distributed according to a probability distribution µ∞.
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▷ It is important to note that, since π = (π(x) ∶ x ∈ S) is probability distribution, the law of
total probability holds for any invariant distribution:

∑
x ∈S

π(x) = 1. (2.3)

Thus, to find an invariant distribution, one has to solve the system of balance equations (2.1)
together with the normalization (2.3).

▷ In fact, when the state space is finite, ∣S∣ < ∞, one can always find a solution to Equa-
tions (2.1, 2.3) (Theorem 2.1). However, the solution might not be unique (Theorem 2.8).

▷ Note also that the balance equation in matrix form (2.2) defines an invariant distribution
as a left eigenvector of the transition matrix P with eigenvalue 1.

▷ The balance equation (2.1) can be viewed as a conservation-of-mass property in the sense
that it is equivalent to7

∑
x ∈S

π(x) ⋅ P (x, y) = π(y) ⋅ ∑
z ∈S

P (y, z) = ∑
z ∈S

π(y) ⋅ P (y, z), for all y ∈ S. (2.4)

Indeed, interpreting each π(x) as the probability mass at state x ∈ S, the left-hand side of
identity (2.4) can be interpreted as the flow of mass coming into state y, while the right-hand
side of identity (2.4) can be interpreted as the flow of mass going out from state y.

Theorem 2.1. Every finite-state Markov chain has an invariant distribution π.

(The proof can be skipped at the first reading. It uses basic linear algebra.)

Proof. Let 1 = [1,1, . . . ,1] be the row-vector whose each entry is 1. Multiplying 1 by the
transition matrix P from the left gives

(P ⋅ 1)(x) = ∑
y ∈S

P (x, y) ⋅ 1(y) = ∑
y ∈S

P (x, y) (1.1)= 1 = 1(x), x ∈ S.

This shows that P ⋅ 1 = 1, so 1 is an eigenvalue of P . In particular, there exists a non-zero left
eigen(row)vector π̃ ≠ 0 of P with eigenvalue 1, so that π̃ ⋅ P = π̃, that is, π̃ satisfies the balance
equations (2.2). Since S is a finite set, we have Π ∶= ∑

x ∈S
π̃(x) < ∞, so

π(x) = 1
Π ⋅ π̃(x)

also satisfies the balance equations (2.2) and, moreover, the normalization (2.3). We conclude
that π is an invariant distribution for the transition matrix P .

It is, however, important to note that a limiting distribution might not exist, even if invariant
distributions do exist. We will study this phenomenon in Example 2.4 and Theorem 2.14.

Theorem 2.2 (Limiting distribution is also invariant). If µ∞ is a limiting distribution
of a finite-state Markov chain, then it is also an invariant distribution.

7You can see this by inserting the row-sum (1.1) (equaling 1) into the right-hand side of (2.1).
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Proof. By the associativity of matrix multiplication, we see that

µt+1 = µ0 ⋅ P t+1 = (µ0 ⋅ P t) ⋅ P = µt ⋅ P,

which can be written entry-by-entry in the form

µt+1(y) = ∑
x ∈S

µt(x) ⋅ P (x, y).

If we assume that as the time grows, t → ∞, we have µt(x) → µ∞(x) for every x ∈ S, then we
see by taking limits on both sides of the above equation that

µ∞(y) = lim
t→∞

µt+1(y) = ∑
x ∈S
( lim
t→∞

µt(x)) ⋅ P (x, y) = ∑
x ∈S

µ∞(x) ⋅ P (x, y).

Hence, the balance equation (2.1) holds. Moreover, because µt is a probability distribution,

∑
x ∈S

µt(x) = 1, for all t ≥ 0.

By taking limits on both sides of the above equation as t →∞, we now see that also the law of
total probability (2.3) holds, so µ∞ is indeed a probability distribution on S.

Observe that, if Markov chain X = (X0,X1, . . .) is started from an invariant initial distribu-
tion µ0 = π, we find using Theorem 1.5 and the associativity of matrix multiplication that

µt = π ⋅ P t = (π ⋅ P ) ⋅ P t−1 = π ⋅ P t−1 = ⋯ = π ⋅ P = π.

Hence, for any Markov chain with a random initial state X0 distributed according to an invariant
distribution, the distribution of Xt remains invariant for all time instants t ∈ N0 = {0,1,2, . . .}.

2.2 Examples

Theorem 2.2 tells that a limiting distribution (if exists) can be determined as a solution of the
linear system of equations (2.1, 2.3). Let us now look into some examples, which show how the
limiting distribution can be computed in practise, how it may depend on the initial distribution
µ0, and how it can happen that a limiting distribution does not exist but invariant distributions
do exist. (We will discuss uniqueness of invariant distributions a little bit later.)

Example 2.3 (Brand loyalty). A smartphone market is dominated by three manufacturers:

state ’1’ = ’Apple’, state ’2’ = ’Nokia’, and state ’3’ = ’Samsung’.

When buying a new phone, a customer chooses to buy a phone from the same manufacturer “i”
as the previous one with probability βi, and otherwise, the customer randomly chooses one of
the other manufacturers (uniformly). Assume that

β1 = 0.8, β2 = 0.6, and β3 = 0.4,

and that all smartphones have the same lifetime regardless of the manufacturer. Will the market
shares of the different manufacturers stabilize in the long run?

Let us model the manufacturer of a typical customer’s phone after the t:th purchase instant
by a Markov chain X = (X0,X1, . . .) with state space S = {1,2,3} and transition matrix

P =
⎡⎢⎢⎢⎢⎢⎣

0.8 0.1 0.1
0.2 0.6 0.2
0.3 0.3 0.4

⎤⎥⎥⎥⎥⎥⎦
.
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We can easily compute powers of P using a computer:

P 2 =
⎡⎢⎢⎢⎢⎢⎣

0.69 0.17 0.14
0.34 0.44 0.22
0.42 0.33 0.25

⎤⎥⎥⎥⎥⎥⎦
, . . . ,

P 10 =
⎡⎢⎢⎢⎢⎢⎣

0.5471287 0.2715017 0.1813696
0.5430034 0.2745217 01824748
0.5441087 0.2737123 0.1821790

⎤⎥⎥⎥⎥⎥⎦
, . . . ,

P 20 =
⎡⎢⎢⎢⎢⎢⎣

0.5454610 0.2727226 0.1818165
0.5454452 0.2727341 0.1818207
0.5454494 0.2727310 0.1818196

⎤⎥⎥⎥⎥⎥⎦
.

The above computations indicate that after 20 phone purchases, an initial customer of manu-
facturer “i” is a customer of manufacturer “1” (Apple) with probability

P 20(i,1) ≈ 0.545.

Because the rows of P 20 are approximately equal, we can see that the effect of initial state
i ∈ S = {1,2,3} becomes negligible over time. Hence, it appears that the market shares indeed
stabilize towards a (unique) limiting distribution

[0.5454545, 0.2727273, 0.1818182].

The balance equations (2.1), π ⋅ P = π, and the normalization ∑3
x=1 π(x) = 1, can be written as

0.8 ⋅ π(1) + 0.2 ⋅ π(2) + 0.3 ⋅ π(3) = π(1)
0.1 ⋅ π(1) + 0.6 ⋅ π(2) + 0.3 ⋅ π(3) = π(2)
0.1 ⋅ π(1) + 0.2 ⋅ π(2) + 0.4 ⋅ π(3) = π(3)

π(1) + π(2) + π(3) = 1.

The unique solution of the above system of linear equations is

π = [ 6
11
,
3

11
,
2

11
] ≈ [0.5454545, 0.2727273, 0.1818182],

close to the numerically found limiting distribution, as it should according to Theorem 2.2. ∎

The limiting distribution in Example 2.3 does not depend on the choice of the initial state of
the Markov chain (or its initial distribution): there is just one distribution π which is the unique
invariant distribution of the Markov chain, and also the unique limiting distribution started from
any initial state. The next example shows that there might not exist a limiting distribution.

Example 2.4 (Ehrenfest Markov chain). The Ehrenfest Markov chains, named after the physi-
cist Paul Ehrenfest (1180–1933), are simple, discrete models for the exchange of gas molecules
between containers. The easiest such model has two containers (left and right) and two particles
(molecules or such). Denote by Xt ∈ {0,1,2} the number of particles in the right container at
time t ∈ N0 = {0,1,2, . . .}. Consider X = (X0,X1,X2, . . .) as a Markov chain on state space
S = {0,1,2} with initial state X0 = 0, and transition matrix

P =
⎡⎢⎢⎢⎢⎢⎣

0 1 0
0.3 0 0.7
0 1 0

⎤⎥⎥⎥⎥⎥⎦
. 10 2

1 1

0.3 0.7
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By computing powers of P , we see that

P 2 =
⎡⎢⎢⎢⎢⎢⎣

0.3 0 0.7
0 1 0
0.3 0 0.7

⎤⎥⎥⎥⎥⎥⎦
, P 3 =

⎡⎢⎢⎢⎢⎢⎣

0 1 0
0.3 0 0.7
0 1 0

⎤⎥⎥⎥⎥⎥⎦
,

P 4 =
⎡⎢⎢⎢⎢⎢⎣

0.3 0 0.7
0 1 0
0.3 0 0.7

⎤⎥⎥⎥⎥⎥⎦
, P 5 =

⎡⎢⎢⎢⎢⎢⎣

0 1 0
0.3 0 0.7
0 1 0

⎤⎥⎥⎥⎥⎥⎦
,

from which we observe that

P t =
⎧⎪⎪⎨⎪⎪⎩

P, t = 1,3,5, . . . ,
P 2, t = 2,4,6, . . .

The distribution µt of the Markov chain with the deterministic initial stateX0 = 0 (corresponding
to initial distribution µ0 = [1,0,0] where there are no particles in the right container) hence
satisfies

µt = µ0 ⋅ P t =
⎧⎪⎪⎨⎪⎪⎩

[0, 1, 0], for t = 1,3,5, . . . ,
[0.3, 0, 0.7], for t = 2,4,6, . . .

Clearly such a Markov chain has no limiting distribution, as its time-dependent distribution
jumps between the two possibilities [0, 1, 0] and [0.3, 0, 0.7]. However, a direct computation
still shows that average of these two distributions,

π = [0.15, 0.50, 0.35],

is an invariant distribution for the Ehrenfest Markov chain. ∎

The next example shows that there might exist several different limiting distributions, de-
pending on the initial state of the Markov chain. This also implies that there are several different
invariant distributions (by Theorem 2.2).

Example 2.5 (Chain with many limiting distributions). Consider a Markov chain on state space
S = {1,2,3,4} with transition matrix

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0.5 0 0
0.5 0.5 0 0
0 0.1 0.8 0.1
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.
1 2 3 4

0.5

0.5
0.1 0.1

0.5 0.5 0.8

1

A direct computation reveals that

µ0 ⋅ P t =
⎧⎪⎪⎨⎪⎪⎩

[0.5, 0.5, 0, 0], for all t ≥ 1, if µ0 = [1, 0, 0, 0],
[0, 0, 0, 1], for all t ≥ 1, if µ0 = [0, 0, 0, 1].

As a consequence (by Theorem 2.2), both8

π(12) = [0.5, 0.5, 0, 0] and π(4) = [0, 0, 0, 1]

are invariant distributions of P . In fact, by linearity, one can verify that every probability
distribution of the form (that is, a convex combination of the two distributions π(12) and π(4))

π = α ⋅ π(12) + (1 − α) ⋅ π(4), 0 ≤ α ≤ 1,

is an invariant distribution of P . ∎
8Here, we use the notation π(12) and π(4) respectively for the different invariant distributions related to the

different absorbing components {1,2} and {4} of the Markov chain.
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2.3 Irreducibility and uniqueness of invariant distribution

One can verify directly that all Markov chains in Examples 1.2, 1.3, and 2.3 have a unique
invariant distribution π. The common feature of these examples is that one can get from any
state to any other state by steps of the Markov chain, that is, they are irreducible.

Given a transition matrix P , we denote x ↝ y if the corresponding transition diagram
contains a (directed) path from x to y. Here we allow paths of length zero, so that x↝ x.

Definition. A transition matrix P and the corresponding Markov chain X is calleda

irreducible (yhtenäinen), if x↝ y for all x, y ∈ S.
aIn graph-theoretical terms, a Markov chain is irreducible if and only if its transition diagram is a

strongly connected directed graph.

Otherwise, P and X are called reducible (epäyhtenäinen).

Example 2.6 (Irreducible Markov chains). The following Markov chains are irreducible:

▷ Weather model (Example 1.2),

▷ Inventory model (Example 1.3),

▷ Brand loyalty (Example 2.3).

∎

Example 2.7 (PageRank). How about PageRank Markov chain in Example 1.4? Does its
behavior depend on the underlying graph or the damping factor c ∈ [0,1]? ∎

In fact, only reducibility can prevent the uniqueness of the invariant distribution. (Moreover,
for reducible Markov chains, we saw in Example 2.5 that convex combinations of invariant
distributions for the different components of the Markov chain are also invariant.)

Theorem 2.8 (Uniqueness of invariant distribution). Consider a finite-state Markov
chain X. If X is irreducible, then its invariant distribution π is unique.

(The proof sketch can be skipped at the first reading. It uses basic linear algebra.)

Proof sketch. The fact that the invariant distribution is unique can be justified by first verifying
that for an irreducible transition matrix P , all column-vectors solving P ⋅ v = v must have
the form v = [a, a, . . . , a]T , for some constant a ∈ R, so that the null space of P − I is one-
dimensional. Using basic facts of linear algebra, one can then conclude from this that also the
linear space of (row-vector) solutions to µ ⋅ (P − I) = 0 has dimension one. In particular, this
space contains at most one solution satisfying the normalization constraint (2.3): ∑x µ(x) = 1.
Hence, an irreducible transition matrix P may have at most one invariant distribution. For
mathematically oriented readers, a complete proof is available in [LPW08, Section 1.5].

How can one then verify the irreducibility? One useful criterion is the following result.

Theorem 2.9 (Irreducibility). A transition matrix P and the corresponding Markov chain
X is irreducible if and only if for all x, y ∈ S there exists an integer t ≥ 1 such that

P t(x, y) > 0.
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(The proof can be skipped at the first reading.) The key to the proof is Theorem 1.7:

P t(x, y) = P (Xt = y ∣ X0 = x), for all x, y ∈ S. (2.5)

Proof. We first prove the implication “⇒”. Assume that P (and X) is irreducible and pick some
states x ≠ y. Then, the transition diagram contains a path x = x0 → x1 → ⋯→ xt = y, so that

P (x0, x1) ⋅ P (x1, x2)⋯P (xt−1, xt) > 0.

As a consequence, we have

P t(x, y) = P (Xt = y ∣ X0 = x) [by (2.5)]
= P (Xt = xt ∣ X0 = x0)
≥ P (Xt = xt, Xt−1 = xt−1, . . . ,X1 = x1 ∣ X0 = x0) [by monotonicity of P ]
= P (x0, x1) ⋅ P (x1, x2)⋯P (xt−1, xt) [by (1.11)]
> 0.

We then prove the implication “⇐”. Pick some states x ≠ y and assume that P t(x, y) > 0 for
some integer t ≥ 1. Then, P (Xt = y ∣ X0 = x) > 0 by (2.5), so that the Markov chain starting at
x can be located in state y after t time instants with positive probability. This is only possible
if the transition diagram contains a path of length t from x to y, so that x↝ y. This shows that
P is irreducible, since x and y were arbitrary states.

The structure of Markov chains can be analyzed by defining a symmetric relation by denoting

x↭ y if and only if x↝ y and y ↝ x.

This equivalence relation partitions the state space into equivalence classes

C(x) = {y ∈ S ∶ y↭ x}, x ∈ S,

called the components (komponentit) of X. An irreducible Markov chain has only one compo-
nent, which contains all states of the state space.

▷ A component is called called absorbing (absorboiva) if the Markov chain cannot exit the
component.

▷ Otherwise, the component is called transient (väistyvä).

Example 2.10 (Reducible Markov chain). The Markov chain in Example 2.5 is not irreducible
because it cannot move away from state 4. The transition diagram

1 2 3 4

0.5

0.5
0.1 0.1

0.5 0.5 0.8

1

of this Markov chain has three components C(1) = C(2) = {1,2}, C(3) = {3}, and C(4) = {4}.
The components {1,2} and {4} are absorbing, and the component {3} is transient. ∎
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2.4 Periodicity and aperiodicity

Recall that a Markov chain may not always admit limiting distributions: the distribution may
jump forever between a number of possibilities (Example 2.4). We now investigate this precisely.

Definition. The period (jakso) of state x ∈ S for Markov chain X with transition matrix
P is the greatest common divisor (gcd) (suurin yhteinen tekijä (syt)) of all the time instants
at which the Markov chain started at X0 = x may return to its initial state.

The set of possible return times can be written as

Tx = {t ≥ 1 ∶ P (Xt = x ∣ X0 = x) > 0}
= {t ≥ 1 ∶ P t(x,x) > 0}, [by (1.10)]

so that the period of x is given by the largest positive integer which divides all elements of Tx.
(The period is not defined for states for which the set of possible return times is empty.)

▷ Usually, one can determine the period from the transition diagram: if the lengths of all
cycles starting and ending at x are multiples of some integer d, and if d is the largest such
integer, then this number d is the period of x.

▷ Note also that if P (x,x) > 0, then the period of state x is 1. Indeed, the set of possible
return times in this case is Tx = {1,2,3, . . .}, with the greatest common divisor 1.

▷ If P is irreducible, then the period of any state is the same. Indeed, for any two states
x, y ∈ S, by irreducibility (Theorem 2.9), there are times t, s ≥ 0 such that P t(x, y) > 0 and
P s(y, x) > 0. Now, by drawing a picture, you can easily verify the following claims:

∗ The time t + s ∈ Tx ∩ Ty.
∗ For any u ∈ Tx, we have u + t + s ∈ Ty.
∗ For any u ∈ Ty, we have u + t + s ∈ Tx.

This shows that the periods of x and y must be the same.

Definition. A transition matrix P and the corresponding Markov chain X is called
aperiodic (jaksoton) if every state has period 1; and otherwise, periodic (jaksollinen).

Example 2.11 (Aperiodic Markov chains). The following Markov chains are aperiodic (convince
yourself that this really is the case):

▷ Weather model (Example 1.2),

▷ Inventory model (Example 1.3),

▷ Brand loyalty model (Example 2.3).

∎

Example 2.12 (Periodic Markov chain). The Ehrenfest Markov chain in Example 2.4 is periodic
with every state having period 2. ∎

Example 2.13 (PageRank). How about PageRank Markov chain in Example 1.4? Does its
behavior depend on the underlying graph or the damping factor c ∈ [0,1]? ∎
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2.5 Markov Chain Convergence Theorem

In fact, any aperiodic Markov chain has a limiting distribution started at any initial distribution
µ0. The limiting distribution can, however, depend on the choice of the initial distribution µ0.
To guarantee that the limiting distribution is independent of this choice, one has to assume in
addition that the Markov chain is irreducible (i.e., has only one component).

Theorem 2.14 (Convergence Theorem). Consider a finite-state Markov chain X.

1. If X is aperiodic, then it admits a limiting distribution starting from any given initial
distribution µ0, that is, the following limit exists:

lim
t→∞

µ0 ⋅ P t = lim
t→∞

µt = µ∞.

(However, µ∞ may depend on the initial distribution µ0).

2. If X is aperiodic and irreducible, then the limiting distribution µ∞ is independent of
the initial distribution µ0, and equals the unique invariant distribution of X. It can
be determined as the unique solution π = µ∞ to balance equations (2.1):

∑
x ∈S

π(x) ⋅ P (x, y) = π(y), for all y ∈ S,

and the normalization (2.3):

∑
x ∈S

π(x) = 1.

(The proof sketch can be skipped at the first reading. We return to this in Chapter 5.)

Proof sketch. Theorem 2.2 says that the limiting distribution is also an invariant distribution.
The existence of the limit can be proved by (at least) two methods. The precise proof requires
techniques beyond this course. Students majoring in mathematics are recommended to have a
look at [LPW08, Sections 4-5], where both proof techniques in the irreducible case are explained
in detail. There, [LPW08, Theorem 4.9] is the main statement, phrased in terms of so-called
“total variation distance” for distributions. The first proof essentially uses methods of matrix
analysis [LPW08, Section 4], while the second proof relies on a very useful general technique
known as stochastic coupling [LPW08, Section 5], that we will also use later for Theorem 5.6.
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3 Markov additive processes and ergodicity

3.1 Ergodicity

Ergodicity refers to a phenomenon where time-averages and space-averages become the same in
the long run. So far, we have learned that the distribution of an irreducible and aperiodic Markov
chain converges to the unique invariant distribution π of the Markov chain (Theorem 2.14). This
distribution π can be viewed as a space-average: for each state y ∈ S in the state space S, the
value π(y) is the probability that y occurs with respect to the distribution π:

if Y ∼ π, then π(y) = P [Y = y].

For any function ϕ ∶ S → R, the expected value of ϕ(Y ) with respect to π is, by definition,

E [ϕ(Y )] = ∑
y ∈S

π(y) ⋅ ϕ(y).

The following results provide alternative interpretations for the invariant distribution π:

▷ The long-term time-average of the random sequence X0,X1,X2, . . . is close to the expected
value of the invariant distribution, in the sense of Equation (3.1) in Theorem 3.1. This
phenomenon is called ergodicity (ergodisuus) property. It is a sort of law of large numbers.

▷ The long-term relative frequency of X to visit any state y is close to the probability π(y)
of y in the invariant distribution, see Equation (3.3) in Theorem 3.3.

Because of the following result, irreducible Markov chains are also termed ergodic Markov
chains in the literature. By Theorem 2.8, every irreducible finite-state Markov chain has a
unique invariant distribution π. Even though there is no guarantee for the existence of a limiting
distribution, we have a limit for the time-averages. (The proof will be skipped in this course.)

Theorem 3.1 (Ergodic theorem). For any irreducible Markov chain X = (X0,X1,X2, . . .)
with invariant distribution π on finite state space S, we have

1

t

t−1
∑
s = 0

ϕ(Xs) Ð→ ∑
y ∈S

π(y) ⋅ ϕ(y), as t→∞, (3.1)

for any function ϕ ∶ S → R with probability one, regardless of the initial state of the
Markov chain.

Note that periodicity is not an issue here, because the time-averages smoothen out any
possible periodic effects present in the model. See Example 3.2.

(The proof sketch can be skipped at the first reading. It uses basic probability tools, and
the details presented in [LPW08] are quite illuminating for mathematically oriented readers.)

Proof sketch. The ergodicity can be proved by fixing an initial state X0 = x and keeping track of
successive visits of the Markov chain to x over time. The Markov property (1.2) implies that the
paths between successive visits are stochastically independent, and the ergodicity property (3.1)
can be proved by applying a strong law of large numbers — see [LPW08, Appendix C].
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Example 3.2 (Ehrenfest Markov chain). Consider the irreducible Markov chainX = (X0,X1, . . .)
on state space S = {0,1,2} of Example 2.4, where each state has period 2, with transition matrix

P =
⎡⎢⎢⎢⎢⎢⎣

0 1 0
0.3 0 0.7
0 1 0

⎤⎥⎥⎥⎥⎥⎦
. 10 2

1 1

0.3 0.7

As X is periodic, it does not have a limiting distribution, but it does have a unique invariant
distribution (by Theorem 2.8, π is unique — or you can check it directly)

π = [π(0), π(1), π(2)] = [0.15, 0.50, 0.35].

We can use the Ergodic Theorem 3.1 (with the identity function ϕ(x) = x) to find that the
long-term time-average of the number of particles in the right container is

lim
t→∞

1

t

t−1
∑
s = 0

Xs = 0 ⋅ π(0) + 1 ⋅ π(1) + 2 ⋅ π(2) = 0.50 + 2 ⋅ 0.35 = 1.2.

What would it be if the transition probabilities would be symmetric: P (0,1) = 0.5 = P (1,2)? ∎

3.2 Long-term relative frequencies and occupation in the long run

As an important consequence, we obtain the following result regarding (empirical) relative fre-
quencies. Recall that the (relative) frequency of state y is the time-average (1.15) of the number
Nt(y) of visits (1.14) of X to y during the first t time steps:

Nt(y)
t

= 1

t

t−1
∑
s = 0

1|(Xs = y), y ∈ S. (3.2)

Note that (3.2) is a random number depending on the state y of interest, determined by the
realized trajectory of the Markov chain at its first t steps (X0,X1, . . . ,Xt−1). The following
result confirms that the value of the invariant distribution π(y) of X can be interpreted as9 the
long-term average time that the Markov chain spends in state y.

Theorem 3.3 (Long-term frequencies of visits). For any irreducible Markov chain
X = (X0,X1,X2, . . .) with invariant distribution π on finite state space S, the relative
frequencies satisfy

lim
t→∞

Nt(y)
t

= π(y), for all y ∈ S, (3.3)

with probability one, regardless of the initial state of the Markov chain.

Moreover, the occupancy matrix

Gt(x, y) = E (Nt(y) ∣ X0 = x)

of the Markov chain also satisfies

lim
t→∞

Gt(x, y)
t

= π(y) for all x, y ∈ S. (3.4)

In particular, the limit (3.4) is independent of the initial state x.

9I.e., long-term time-average of the occupancy time, or long-term relative frequency.
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Proof. The number Nt(y) of visits (3.2) can be written as

Nt(y) =
t−1
∑
s = 0

1|(Xs = y) =
t−1
∑
s = 0

ϕ(Xs),

where ϕ ∶ S → R is the function

ϕ(x) = 1|{x = y} =
⎧⎪⎪⎨⎪⎪⎩

1, if x = y,
0, if x ≠ y.

By applying Theorem 3.1, we conclude that

lim
t→∞

Nt(y)
t

= ∑
x ∈S

π(x) ⋅ ϕ(x) = ∑
x ∈S

π(x) ⋅ 1|{x = y} = π(y),

with probability one, regardless of the initial state. This proves (3.3).
To prove (3.4), note that the relative frequency of state y is bounded by

0 ≤ Nt(y)
t

≤ 1, with probability one for all t ∈ N0.

By taking the limit t→∞ inside the expectation10 and applying (3.3), it follows that

lim
t→∞

Gt(x, y)
t

= lim
t→∞

E (Nt(y)
t
∣X0 = x) = E ( lim

t→∞
Nt(y)
t
∣X0 = x) = π(y).

Example 3.4 (November rain). The November weather of day t ∈ N0 = {0,1,2, . . .} in Lahti
can be modeled using a stochastic process in state space {0,1}, where

state ’0’ = ’dry’ and state ’1’ = ’rain’.

The weather is represented as a Markov chain X = (X0,X1,X2, . . .) with transition matrix

P = [1 − p p
q 1 − q]

(note that the rows and columns are indexed by the states x = 0,1), and transition diagram

0 11 − p

p

q

1 − q

where p, q ∈ [0,1]. For concreteness, let us assume that p = 0.75 and q = 0.5.
Because the Markov chain is irreducible and aperiodic, by Theorem 2.14 it converges to a

unique limiting distribution, which is also its invariant distribution π = [π(0), π(1)] = [0.4, 0.6]
— solved from the balance equations (2.1) and the normalization (2.3):

0.25 ⋅ π(0) + 0.5 ⋅ π(1) = π(0),
0.75 ⋅ π(0) + 0.5 ⋅ π(1) = π(1),

π(0) + π(1) = 1.

10Allowed for bounded random sequences by Lebesgue’s dominated convergence theorem [Kyt20, Thm. VII.22].

26



We can use the Ergodic Theorem 3.1 (with the identity function ϕ(x) = x) to find that the
time-average of the “raininess” is

lim
t→∞

1

t

t−1
∑
s = 0

Xs = 0 ⋅ π(0) + 1 ⋅ π(1) = π(1) = 0.6,

and Theorem 3.3 to find that (with probability one) the relative “rain frequency” is given by (3.3):

lim
t→∞

Nt(1)
t

= π(1) = 0.6,

where Nt(1) is the number of rainy days among the first t days.
In finite time-horizon, similarly as in Example 1.11, we can predict the expected number of

rainy days during November (30 days): according to Theorem 1.10, this is the entry G30(x,1) of
the occupancy matrixG30 at time t = 30, where x ∈ {0,1} is the state of day zero. Applying (1.16)
from Theorem 1.10 (and a computer), we find that

G30 = [
G30(0,0) G30(0,1)
G30(1,0) G30(1,1)

] =
29

∑
s = 0
[0.25 0.75
0.5 0.5

]
s

= [12.5 17.5
11.7 18.3

] .

According to the prediction, the expected number of rainy days is hence

⎧⎪⎪⎨⎪⎪⎩

G30(0,1) = 17.5, if x = 0,
G30(1,1) = 18.3, if x = 1.

The time-averages of these values are

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

G30(0,1)
30

= 0.58, if x = 0,

G30(1,1)
30

= 0.61, if x = 1.

These are not very far from the equilibrium values, given by Equation (3.4) in Theorem 3.3:

lim
t→∞

Gt(x,1)
t

= π(1) = 0.6 independently of x ∈ {0,1}.

∎

Markov additive processes provide more sophisticated models based on Markov chains. To
illustrate the idea, we modify the weather model by introducing temperature in Example 3.5.

3.3 Markov additive processes — cost/profit models

In many applications, we need to analyze sums of random numbers which depend on the realized
trajectory of a Markov chain. Examples include cumulative rewards in reinforcement learning,
cost/profit in financial models and technological systems, and frequencies related to statistical
models. Markov additive processes provide a rich modeling framework for such applications and
admit powerful numerical formulas based on linear algebra.

In general, Markov additive processes have an underlying Markov component and an additive
component that represents cumulative values of some quantity (e.g. profit). To illustrate the
idea, let us first consider an example.
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Example 3.5 (November snow). A simple model for snowy days in November in Lahti consists of
a Markov chain X = (X0,X1,X2, . . .) with state space S = {−25,−24, . . . ,−1,0,+1, . . . ,+24,+25}
modeling the daily temperature11, and a random variable U with two possible values:

U = 0 = ’dry’ and U = 1 = ’rain’.

For concreteness, let us model the probability of rainy versus dry weather by the statistical
equilibrium values of the weather model in Example 3.4: U ∼ π, that is,

P (U = 1) = 0.6 and P (U = 0) = 0.4.

We will also assume that U (rain indicator) is independent of Markov chain X (daily tempera-
tures). We then define the random variables

C(y) = 1|{y ≤ −1} ⋅U, y ∈ S,

which indicate whether the weather is snowy:

C(y) = 1 = ’it snows’ and C(y) = 0 = ’it does not snow’,

since it snows if and only if the temperature is below zero and it rains. The events when it
does not snow include both rainy days with non-negative temperature, and dry days with any
temperature (for simplicity, we are only interested in snow in this example).

Thus, the number Vt of snowy days among the first t days of the month can be expressed as

Vt =
t−1
∑
s = 0

Cs(Xs),

where for each time instant s ≥ 0 and each state y ∈ S, the random variable Cs(y) is just an
independent copy of C(y). Now, we ask: What is the expected number of snowy days during
November (30 days), if the first of November had temperature zero (X0 = 0)? To answer this
question, we need to find the expected number of days when it rains and the temperature is
below zero. The answer is handily provided to us by Theorem 3.6 proven below: it holds that

E (V30 ∣ X0 = 0) =
+25
∑

y = −25

29

∑
s = 0

P s(0, y) ⋅E (C(y))

=
+25
∑

y = −25

29

∑
s = 0

P s(0, y) ⋅ 1|{y ≤ −1} ⋅ P (U = 1)

= 0.6 ⋅
−1
∑

y = −25

29

∑
s = 0

P s(0, y). (3.5)

Thus, given the transition matrix P for the temperature Markov chain X, and the probability
distribution of the rain indicator U , we could use a computer to answer the above question.

The transition matrix of the Markov component X has size 51 × 51 in general. For the
purposes of modeling snowfall, it is quite reasonable to model the temperature with a smaller
Markov chain on state space {−2,−1,0,+1,+2}, where

state ’−2’ = ’temperature ≤ −2’,
state ’−1’ = ’temperature = −1’,
state ’0’ = ’temperature = 0’,
state ’+1’ = ’temperature = +1’,
state ’+2’ = ’temperature ≥ +2’,

11Do you think a simple Markov chain is good for modeling temperature? Remember that we try to study
very simplified “toy models” in this course, and especially the weather models are not very realistic.
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and with transition matrix

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P (−2,−2) P (−2,−1) P (−2,0) P (−2,+1) P (−2,+2)
P (−1,−2) P (−1,−1) P (−1,0) P (−1,+1) P (−1,+2)
P (0,−2) P (0,−1) P (0,0) P (0,+1) P (0,+2)
P (+1,−2) P (+1,−1) P (+1,0) P (+1,+1) P (+1,+2)
P (+2,−2) P (+2,−1) P (+2,0) P (+2,+1) P (+2,+2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8 0.2 0 0 0
0.1 0.8 0.1 0 0
0 0.1 0.8 0.1 0
0 0 0.1 0.8 0.1
0 0 0 0.2 0.8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.6)

Then, we can use a computer to easily compute (3.5):

E (Vt ∣ X0 = 0) = 0.6 ⋅
−1
∑

y = −2

29

∑
s = 0

P s(0, y) ≈ 5.8.

∎

General setup. To introduce the general setup, consider Markov chainX = (X0,X1,X2, . . .)
on finite state space S. Assume that at each time s ≥ 0, a cost/profit depending on the state
Xs = y occurs. Let us model the cost/profit at state y by a real-valued random variable C(y).
To allow for a time-evolution of the cost/profit process as well, for each time instant s ≥ 0, we
shall take independent copies of C(y): that is, for every state y ∈ S, we have a collection

{Cs(y) ∶ s ∈ N0},

of independent and identically distributed (iid) random variables:

P [Cs(y) = a] = P [C(y) = a], for all y ∈ S and for all a ∈ R.

We will also assume that the profits/costs Cs(y) are independent of X0,X1, . . . ,Xs, i.e., the
Markov chain up to time s. This prevents the Markov chain to decide its transitions based on
future profits/costs, but, crucially, allows for the transition from Xt to Xt+1 be based on current
cost/profit Ct(Xt).

Reminder. A collection {Uj ∶ j ∈ N0} of random variables is said to be (iid): independent and
identically distributed (riippumattomat ja samoin jakautuneet) if each random variable Uj has
the same probability distribution as the others and all of them are mutually independent. ♣

Definition. A (time-homogeneous) Markov additive process (Markov-additiivinen pros-
essi) is a pair (X,V ) of processes, where X = (X0,X1,X2, . . .) is a Markov chain anda

Vt =
t−1
∑
s = 0

Cs(Xs).

▷ The random variables {C(y) ∶ y ∈ S} are called the increments (lisäykset) of (X,V ).

▷ The processX = (X0,X1, . . .) is called the Markov component (Markov-komponentti).

▷ The process V = (V0, V1, . . .) is called the additive component (summa-komponentti).
aFor time t = 0 we set V0 = 0 by usual convention.
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Vt is the total cost/profit up to time t. The expected total cost/profit up to time t is

E (Vt) = E (
t−1
∑
s = 0

Cs(Xs)) =
t−1
∑
s = 0

E (Cs(Xs)).

To simplify some formulas, we will denote the expected increment at state y as

c(y) = E (C(y)), y ∈ S.

The values c = {c(y) ∶ y ∈ S} form a column-vector with elements indexed by the possible states
y ∈ S. Hence, we can multiply it from the left by the occupancy matrix Gt from Equation (1.16).
The next result shows that we thus obtain the expected value of the total cost/profit.

Theorem 3.6 (Expected total cost/profit in finite time-horizon). For a Markov additive
process (X,V ) on a finite state space S, the expected total cost/profit up to time t can be
computed using the occupancy matrix Gt as

E (Vt ∣ X0 = x) = ∑
y ∈S
(

t−1
∑
s = 0

P s(x, y)) ⋅ c(y) = ∑
y ∈S

Gt(x, y) ⋅ c(y), for all x ∈ S, (3.7)

or in matrix form (with c interpreted as a column-vector indexed by y ∈ S),

E (Vt ∣ X0 = x) = (Gt ⋅ c)(x), for all x ∈ S.

(The proof can be skipped at the first reading. It uses basic probability tools.)

Proof. By conditioning on all the possible states of Xs, we have

E (Cs(Xs) ∣ X0 = x) = ∑
y ∈S

E (Cs(Xs) ∣ Xs = y, X0 = x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= E (C(y))

⋅P (Xs = y ∣ X0 = x)

= ∑
y ∈S

E (C(y)) ⋅ P s(x, y), [by (1.10)]

= ∑
y ∈S

c(y) ⋅ P s(x, y), [E (C(y)) = c(y)]

where E (Cs(Xs) ∣ Xs = y, X0 = x) = E (C(y)) by the independence of the increment Cs(y) and
states Xs and X0. We obtain

E (Vt ∣ X0 = x) = E(
t−1
∑
s = 0

Cs(Xs) ∣X0 = x) =
t−1
∑
s = 0

E (Cs(Xs) ∣ X0 = x)

=
t−1
∑
s = 0

∑
y ∈S

c(y) ⋅ P s(x, y)

= ∑
y ∈S
(

t−1
∑
s = 0

P s(x, y)) ⋅ c(y)

= ∑
y ∈S

Gt(x, y) ⋅ c(y) [by (1.16)]

= (Gt ⋅ c)(x).

This is the asserted formula (3.7).
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Example 3.7 (Inventory model). Recall the inventory model of Example 1.3. Assume that the
store buys laptops for 590 EUR and sells them for 790 EUR (so that the revenue from selling
one laptop is (790-590) EUR=200 EUR), and that the storage expenses per week is 50 EUR for
every laptop in stock at the beginning of a week. Determine the expected net profit from ten
forthcoming weeks, when in the beginning of the first week there are five laptops in stock.

Denote by Vt the net profit (i.e., sales revenue minus storage expenses) from the first t weeks.
The number of laptops in stock Xt in the beginning of week t is a Markov chain with state space
S = {2,3,4,5} with initial state X0 = 5. Now consider a week t starting with Xt laptops in stock.
Then the storage expenses (EUR) for the week equals 50Xt, and the number of sold laptops
equals min(Xt,Dt) where Dt is the demand of week t. Because the weekly demands Dt are
mutually independent and identically distributed and Dt is also independent of (X0, . . . ,Xt),
we can model the net profit as a Markov additive process.

Let D ∼ Poi(λ) be a Poisson distributed random variable with mean λ = 3.5:

P (D = k) =
⎧⎪⎪⎨⎪⎪⎩

e−λ λk

k! , k ≥ 0,
0, k < 0.

Then, since X = (X0,X1, . . .) is a Markov chain (Example 1.3) and the net profit can be written
in the form

Vt =
t−1
∑
s = 0

Cs(Xs),

with increments {C(y) ∶ y ∈ S} distributed as

C(y) = (790 − 590)min(y,D) − 50y, y ∈ S, (3.8)

we see that (X,V ) is a Markov additive process with Markov component X, additive component
V , and increments (3.8). To compute the expectation of Vt using Theorem 3.6, we need to first
compute the expectation

c(y) = E (C(y)) = (790 − 590) E (min(y,D)) − 50y, y ∈ S.

Because the demands are Poisson distributed with mean λ = 3.5, we see that the expected
number of laptops sold during a week starting with x laptops in stock equals

E (min(y,D)) =
∞
∑
k = 0

e−λ
λk

k!
min(y, k)

=
y

∑
k = 0

e−λ
λk

k!
k + (1 −

y

∑
k = 0

e−λ
λk

k!
) y

= y −
y

∑
k = 0

e−λ
λk

k!
(y − k),

and hence, we obtain

c(y) = (790 − 590)(y −
y

∑
k = 0

e−λ
λk

k!
(y − k)) − 50y.

The other ingredient in Theorem 3.6 is the occupancy matrix Gt, which can be computed
from powers of the transition matrix (that we already found in Example 1.3):

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.03 0 0 0.97
0.11 0.03 0 0.86
0.18 0.11 0.03 0.68
0.22 0.18 0.11 0.49

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.
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Powers of P can be easily evaluated using a computer, and the multiplication of the column-
vector c = {c(y) ∶ y ∈ S} from the left by the s:th matrix power P s as well. We find that (recall
that column vectors are indexed by the states x = 2,3,4,5)

c =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

266.78
352.61
395.29
400.20

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and
9

∑
s = 0

P s ⋅ c =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3627.24
3704.00
3735.81
3735.00

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

We conclude that the expected net profit from next ten weeks is 3735 EUR.
Note that the expected net profit would be 0.81 EUR higher if there would initially be 4

instead of 5 laptops in stock. This is in contrast with one-week expected profits

P 0 ⋅ c = I ⋅ c = c =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

266.78
352.61
395.29
400.20

⎤⎥⎥⎥⎥⎥⎥⎥⎦

satisfying

395.29 = c(4) < c(5) = 400.20,

and indicates that actions which maximize one-week outcomes may not be optimal for longer
time-horizons. We return to this model again in Example 3.11. ∎

3.4 Behavior of time-averages in the long run

For a Markov additive process (X,V ), the additive component V = (V0, V1, V2, . . .) usually does
not converge to a statistical equilibrium even if the underlying Markov chain X would. Rather,
Vt might tend to infinity or minus infinity in the long run — note that Vt comprises sums of
real-valued random variables. Therefore, it makes sense to analyze the long-term growth rates
Vt/t. The following result tells that the expected growth rate has a limit as t → ∞, which
moreover does not depend on the initial state of the Markov component.

Theorem 3.8 (Long-term time-average of expected total cost/profit). Assume that the
Markov chain X is irreducible. Then, for Markov additive process (X,V ) on finite state
space S, the time-average of the expected total cost/profit satisfies

lim
t→∞

1

t
E (Vt) = ∑

y ∈S
π(y) ⋅ c(y) = π ⋅ c, (3.9)

regardless of the initial state of the Markov component.

Proof. By Theorem 3.6, we have

1

t
E (Vt ∣ X0 = x) =

1

t
(Gt ⋅ c)(x), for all x ∈ S.

Taking the limit t→∞ of both sides and recalling that by (3.4) in Theorem 3.3,

lim
t→∞

Gt(x, y)
t

= π(y) for all x, y ∈ S,

we obtain the asserted limit (3.9), regardless of the initial state X0 = x of the Markov chain.
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Example 3.9 (November snow). Returning to Example 3.5, consider the simplified temperature
Markov chain with transition matrix P given by Equation (3.6). Because P is irreducible, it has
a unique invariant distribution

π = [0.125, 0.25, 0.25, 0.25, 0.125], (3.10)

which can be solved from the balance equations (2.1) and the normalization (2.3). Theorem 3.8
gives the long-term time-average of the expected number of snowy days:

lim
t→∞

1

t
E (Vt) =

+2
∑

y = −2
π(y) ⋅ c(y) [by (3.9)]

= 0.6 ⋅
+2
∑

y = −2
π(y) ⋅ 1|{y ≤ −1} [by (3.11)]

= 0.6 ⋅
−1
∑

y = −2
π(y)

= 0.6 ⋅ (0.125 + 0.25) [by (3.10)]
= 0.225,

where we used the knowledge from Example 3.5 for c(y) = E (C(y)):

c(y) = 1|{y ≤ −1} ⋅ P (U = 1) = 0.6 ⋅ 1|{y ≤ −1}. (3.11)

In conclusion, the model predicts 22.5% of days to be snowy. ∎

In fact, one can prove via similar arguments as for Ergodic Theorem 3.1 that the above result
also holds for the process Vt/t itself.

Theorem 3.10 (Long-term time-average of total cost/profit). Assume that the Markov
chain X is irreducible. Then, for Markov additive process (X,V ) on finite state space S,
the time-average of the total cost/profit satisfies

lim
t→∞

1

t
Vt = ∑

y ∈S
π(y) ⋅ c(y) = π ⋅ c

with probability one, regardless of the initial state of the Markov component.

Proof. This is a good exercise for students majoring in mathematics: check out the proof of
Theorem 3.1 from [LPW08, Appendix C] and think how to obtain the asserted result.

Example 3.11 (Inventory model). Let us continue the analysis of Example 3.7. What is the
long-term (expected) profit rate for the Katiskakauppa.com company?

Because the Markov chain X is irreducible, it has a unique invariant distribution π which
can be solved from the balance equations (2.1) and the normalization (2.3). By applying Theo-
rems 3.8 and 3.10, we conclude that the long-term (expected) profit rate equals

lim
t→∞

1

t
E (Vt) = ∑

y ∈S
π(y) ⋅ c(y) = lim

t→∞
1

t
Vt,

independently of the initial state X0 of the inventory. After computing the numerical values, we
find that the long-term profit rate equals 371.29 EUR per week. This corresponds to approxi-
mately 3713 EUR profit rate per a 10-week period, and is quite close to the expected cumulative
profit computed in Example 3.7 — which depend on the initial state. ∎
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4 Passage times and hitting probabilities

4.1 Passage times

Consider Markov chain X = (X0,X1,X2, . . .) on finite state space S.

Definition. The passage time (kulkuaika) of X into set A ⊂ S on state space S is

TA = min{t ≥ 0 ∶ Xt ∈ A}, (4.1)

with the notational convention that TA = ∞ if the process X never visits A.

The passage time is a random variable which takes values in the extended set of integers

N0 ∪ {∞} = {0,1,2, . . .} ∪ {∞}.

The expected passage time (odotettu kulkuaika) into set A for X starting at state X0 = x is

kA(x) = E (TA ∣ X0 = x).

Theorem 4.1 (Expected passage time). For any (time-homogeneous) Markov chain with
transition matrix P on finite state space S, the expected passage times into set A ⊂ S,

{kA(x) ∶ x ∈ S},

satisfy the system of equations

kA(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 + ∑
y ∈S

P (x, y) ⋅ kA(y), if x ∉ A,

0, if x ∈ A.
(4.2)

▷ Note that since kA(y) = 0 for all y ∈ A, we have

∑
y ∈S

P (x, y) ⋅ kA(y) = ∑
y ∉A

P (x, y) ⋅ kA(y).

▷ From the harmonic analysis point of view, the system of equations (4.2) corresponds to a
discrete Poisson equation (Poisson-yhtälö) on the complement Ac = S ∖A,

∆f(x) = −1, for all x ∈ Ac,

with boundary condition on ∂Ac = {y ∈ A ∶ ∃ x ∈ Ac s.t. P (x, y) > 0}

f(x) = 0, for all x ∈ ∂Ac,

where ∆ = P − I is the discrete Laplace operator (diskreetti Laplace-operaattori)12 associ-
ated to transition matrix P . In some literature, the operator ∆ is also termed the drift
matrix (virtausmatriisi) of the Markov chain.

12Note that there are slightly different conventions in defining the discrete Laplace operator in the literature.
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Example 4.2. Consider an undirected graph G with finite node set S such that the degree13

deg(x) of every node x in G is at least 1. A random walk X on G is a Markov chain that
proceeds by moving at each step to a neighboring node selected uniformly at random:

P (x, y) = 1|(x ∼ y)
deg(x)

=
⎧⎪⎪⎨⎪⎪⎩

1
deg(x) , if x and y are neighbors,

0, otherwise,
x, y ∈ S,

where we write x ∼ y if x and y are neighbors, meaning that there is an (undirected) edge in the
graph G between them.

Because P (x, y) = 0 if x and y are not neighbors, we see that the discrete Laplace operator
∆ = P − I associated to this Markov chain is operating on functions f ∶ S → R by

(∆f)(x) = ∑
y ∈S
(P (x, y) − δx(y)) ⋅ f(y)

= ∑
y ∈S

P (x, y) ⋅ f(y) − f(x)

= 1

deg(x) ∑y ∈S
x∼y

(f(y) − f(x)), x ∈ S.

This is the average difference of the values of f around x. ∎

To prove Theorem 4.1, we will use a very useful technique for Markov chains, termed first-
step analysis, that is, by conditioning on the possible states of the very first step, X1. In words,
by the Markov property (1.2), we may first investigate the very first transition X0 → X1 of the
Markov chain, and then the future after this will have similar dynamics, because it only depends
on the state X1 and not anymore on X0. This idea will feature a lot in the sequel.

Proof of Theorem 4.1. 14 If the initial state x ∈ A, then we surely have TA = 0, so that kA(x) = 0.
Thus, let us assume that x ∉ A and consider the first line in (4.2). Note that when X0 = x ∉ A,

TA = min{t ≥ 1 ∶ Xt ∈ A} = 1 + min{s ≥ 0 ∶ Xs+1 ∈ A} [writing s = t − 1]
= 1 + min{s ≥ 0 ∶ X̂s ∈ A} [writing X̂s =Xs+1]

where we define X̂s =Xs+1 for s = 0,1,2, . . . the “future” of the Markov chain after the first step.
Using the Markov property (1.2), we may regard the process X̂ = (X1,X2,X3, . . .) as the same
Markov chain but started at X1 = X̂0, so that we can write

E (TA ∣ X1 = y, X0 = x) = 1 + E (TA ∣ X̂0 = y) = 1 + kA(y).

By conditioning on the possible values of X1, we now find that

kA(x) = ∑
y ∈S

E (TA ∣ X1 = y, X0 = x) ⋅ P (X1 = y ∣ X0 = x)

= ∑
y ∈S
(1 + kA(y)) ⋅ P (x, y).

The claimed equations (4.2) follow from this after recalling that the row-sums of P equal one.
13Here by degree we mean the outdegree deg(x) = ∑z A(x, z) (each edge is oriented in two ways, and contributes

to both the outdegree deg(x) = ∑z A(x, z) and the indegree ∑z A(z, x), where A is the adjacency matrix of the
graph defined in Equation (1.6).

14Theorem 4.1 can also be proven using a more general result, Theorem 4.6 in Section 4.3, which interested
readeers can check out from Section 4.3 below.
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In fact, kA is the smallest nonnegative solution to the linear system (4.2). It can be found
numerically as follows. First set f0(x) = 0 for all x ∈ S, and then iteratively compute

fn+1(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 + ∑
y ∉A

P (x, y) ⋅ fn(y), x ∉ A,

0, x ∈ A,
n = 1,2,3, . . . .

Then, it is possible to prove that f0, f1, f2, . . . forms a nondecreasing sequence of functions with
pointwise limit f(x) = limn→∞ fn(x). The limit f takes values in the extended number set [0,∞]
and is the smallest nonnegative solution of (4.2) — so f = kA. (Verifying these statements is a
good exercise for a mathematically oriented reader. A good exercise for a programming oriented
reader is to implement an algorithm which computes the above limit numerically.)

Example 4.3 (Human resource management). Kalvonvääntäjät Oyj is management consulting
company which has 100 employees divided into three salary categories:

’1’ = ’junior’, ’2’ = ’senior’, and ’3’ = ’partner’.

An employee holding a junior position in the beginning of a month gets promoted to senior with
probability 0.030, leaves the company with probability 0.020, and otherwise continues in the
same position in the beginning of next month. Similarly, a senior gets promoted to a partner
with probability 0.010, leaves the company with probability 0.008, and otherwise continues in
the same position. A partner leaves the company with probability 0.010.

▷ What is the expected duration that a newly recruited employee remains in the company?

▷ How long is a freshly promoted partner expected to serve in the company?

We will assume that all promotions and exits occur independently of the states of the previous
months. The career development of an employee can then be modeled using a Markov chain on
state space {0,1,2,3} where the absorbing state 0 means that the employee has left the company,
and states {1,2,3} are transient. The transition matrix and transition diagram are

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0.020 0.950 0.030 0
0.008 0 0.982 0.010
0.010 0 0 0.990

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(4.3)

21 3

0

0.030 0.010

0.020 0.008 0.010

0.950 0.982 0.990

1
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The time (in months) in service for a newly recruited junior is the passage time of the Markov
chain from state 1 into state 0. The expectation of this random integer equals kA(1) with
A = {0}. According to Theorem 4.1, the expected passage times k{0}(x) = k(x) satisfy the
system of equations (4.2):

k(x) = 1 +
3

∑
y = 0

P (x, y) ⋅ k(y) = 1 +
3

∑
y = 1

P (x, y) ⋅ k(y), x ∈ {1,2,3},

with boundary condition k(0) = 0. Using the transition matrix in (4.3) we obtain the equations
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k(1) = 1 + 0.950 ⋅ k(1) + 0.030 ⋅ k(2),
k(2) = 1 + 0.982 ⋅ k(2) + 0.010 ⋅ k(3),
k(3) = 1 + 0.990 ⋅ k(3).

These linear equations can be solved easily by first setting

k(3) = 1

1 − 0.990
= 100,

then k(2) = 1 + 0.010 ⋅ k(3)
1 − 0.982

= 111.11,

and finally k(1) = 1 + 0.030 ⋅ k(2)
1 − 0.950

= 86.67.

Hence we conclude that15

▷ a freshly hired junior is expected to serve in the company for 86.67 months ≈ 7.2 years, and

▷ a freshly promoted partner is expected to serve in the company for 100 months ≈ 8.3 years.

∎

4.2 Hitting probabilities

Consider Markov chain X = (X0,X1,X2, . . .) on finite state space S. Select a non-empty set of
states A ⊂ S. An irreducible Markov chain will surely visit every state, but a reducible chain
might not. What is the probability that X starting at X0 = x eventually visits A?

Definition. The hitting probability (osumatodennäköisyys) by X of set A from initial
state X0 = x is

hA(x) = P (Xt ∈ A for some t ≥ 0 ∣ X0 = x) = P (TA < ∞ ∣ X0 = x). (4.4)

Theorem 4.4 (Hitting probabilities). For any (time-homogeneous) Markov chain with
transition matrix P on finite state space S, the hitting probabilities into set A ⊂ S,

{hA(x) ∶ x ∈ S},

satisfy the system of equations

hA(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑
y ∈S

P (x, y) ⋅ hA(y), if x ∉ A,

1, if x ∈ A.
(4.5)

15Similarly, the expected amount of time that a newly recruited employee has to wait before having been
promoted to a partner equals k{3}(1). In this case, Theorem 4.1 gives k{3}(1) = ∞. Does this make sense?
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▷ The system of equations (4.5) can be interpreted in harmonic analytic terms as a Poisson
equation, namely a discrete Laplace equation (Laplace-yhtälö) on the complement Ac = S∖A,

∆f(x) = 0, for all x ∈ Ac,

with boundary condition

f(x) = 1, for all x ∈ ∂Ac.

▷ In fact, hA is the smallest nonnegative solution to the system (4.5).

The proof of Theorem 4.4 below uses, again, first-step analysis.

Proof of Theorem 4.4. 16 If the initial state x ∈ A, then X surely visits A, so that hA(x) = 1.
Thus, let us assume that x ∉ A. By conditioning on the possible values of X1, we now find that

hA(x) = P (TA < ∞ ∣ X0 = x)

= ∑
y ∈S

P (TA < ∞ ∣ X1 = y, X0 = x) ⋅ P (X1 = y ∣ X0 = x)

= ∑
y ∈S

P (TA < ∞ ∣ X1 = y) ⋅ P (x, y) [by Markov property (1.2)]

= ∑
y ∈S

hA(y) ⋅ P (x, y),

which is the asserted equation (4.5) for x ∉ A.

Example 4.5 (Human resource management). Consider the Kalvonvääntäjät company de-
scribed in Example 4.3. What is the probability that a freshly recruited new employee eventually
becomes a partner in the company?

The answer is the hitting probability hA(1) of set A = {3} from initial stateX0 = 1. According
to Theorem 4.4, the hitting probabilities h{3}(x) = h(x) satisfy the system of equations (4.5):

h(x) =
3

∑
y = 0

P (x, y) ⋅ h(y), x = 0,1,2,

with boundary condition h(3) = 1. Using the transition matrix in (4.3) we obtain the equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h(0) = h(0),
h(1) = 0.020 ⋅ h(0) + 0.950 ⋅ h(1) + 0.030 ⋅ h(2),
h(2) = 0.008 ⋅ h(0) + 0.982 ⋅ h(2) + 0.010 ⋅ h(3),
h(3) = 1.

Because there is no access from state 0 to state 3, we know that h(0) = 0. In light of this, we
may solve the other equations to obtain

h = [0, 0.333, 0.556, 1].

We conclude that the probability that a freshly recruited junior eventually becomes a partner
equals h(1) = hA(1) = 0.333. Note that the entries of h do not sum into one, even though they
are probabilities. (Not all vectors of probabilities represent probability distributions.) ∎

16Theorem 4.4 can also be proven using a more general result, Theorem 4.6 in Section 4.3, which interested
readeers can check out from Section 4.3 below.
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4.3 General Poisson type equation for accumulated cost at passage time

Recall that the transition diagram of X is a directed graph with node set being the state space
S and link set comprising the ordered node pairs (x, y) such that P (x, y) > 0. Assume that at
each state y and at each transition (x, y), a deterministic cost (or profit) occurs:

{c(y) ∶ y ∈ S}, {c(x, y) ∶ x, y ∈ S, P (x, y) > 0},

where by convention we set c(x, y) = 0 when P (x, y) = 0. The total cost accumulated at the
passage time into A is

WA =
TA

∑
s = 0

c(Xs) +
TA−1
∑
s = 0

c(Xs,Xs+1). (4.6)

For the Markov chain started at initial state X0 = x, the expected total cost is E (WA ∣ X0 = x).

Theorem 4.6 (Expected total cost). Consider a (time-homogeneous) Markov chain X =
(X0,X1,X2, . . .) with transition matrix P on finite state space S. Select a non-empty set
of states A ⊂ S. The expected total cost accumulated at the passage time into A,

wA(x) = E (WA ∣ X0 = x), (4.7)

satisfies the system of equations

wA(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

c(x) + ∑
y ∈S

P (x, y) ⋅ (c(x, y) +wA(y)), if x ∉ A,

c(x), if x ∈ A.
(4.8)

Proof. If the initial state x ∈ A, we already have wA(x) = c(x), since TA = 0. Assume next that
x ∉ A. As before, the proof proceeds by applying first-step analysis, that is, by conditioning on
the possible states of the first step X1. By the Markov property (1.2), we have

E (WA ∣ X1 = y, X0 = x) = c(x) + c(x, y) + E(
TA

∑
s = 1

c(Xs) +
TA−1
∑
s = 1

c(Xs,Xs+1) ∣X1 = y, X0 = x)

= c(x) + c(x, y) + E (WA ∣ X0 = y)

= c(x) + c(x, y) + wA(y), y ∈ S.

Hence, we obtain

E (WA ∣ X0 = x) = ∑
y ∈S

E (WA ∣ X1 = y, X0 = x) ⋅ P (X1 = y ∣ X0 = x)

= ∑
y ∈S

c(x) ⋅ P (x, y) + ∑
y ∈S
(c(x, y) +wA(y)) ⋅ P (x, y)

= c(x) + ∑
y ∈S

P (x, y) ⋅ (c(x, y) +wA(y)),

which is the asserted equation (4.8) for x ∉ A.

We can now easily derive the Poisson equation (4.2) from the above more general result.
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Proof of Theorem 4.1 using Theorem 4.6. If in Theorem 4.6, we choose the costs to be

⎧⎪⎪⎨⎪⎪⎩

c(x) = 1, x ∉ A,
c(x) = 0, x ∈ A,

and c(x, y) = 0, x, y ∈ S,

then system (4.2) coincides with system (4.8). Hence, it remains to show that kA(x) = wA(x),
where wA is given by (4.6, 4.7) as in Theorem 4.6 in Section 4.3.

By definition of the passage time TA, we have XTA
∈ A and Xs ∉ A for all 0 ≤ s ≤ TA − 1, so

kA(x) = E (TA ∣ X0 = x) = E(
TA−1
∑
s = 0

1 ∣ X0 = x) = E(
TA

∑
s = 0

c(Xs) ∣ X0 = x) = wA(x),

using the notation (4.7) from Section 4.3. Theorem 4.6 then yields the asserted system (4.2).

Similarly, we can easily derive the Laplace equation (4.5).

Proof of Theorem 4.4 using Theorem 4.6. If in Theorem 4.6, we choose the costs to be

⎧⎪⎪⎨⎪⎪⎩

c(x) = 1, x ∈ A,
c(x) = 0, x ∉ A,

and c(x, y) = 0, x, y ∈ S,

then system (4.5) coincides with system (4.8). Hence, it remains to show that hA(x) = wA(x),
where wA is given by (4.6, 4.7) as in Theorem 4.6 in Section 4.3.

By definition of the passage time TA, we have XTA
∈ A and Xs ∉ A for all 0 ≤ s ≤ TA − 1, so

WA =
TA

∑
s = 0

c(Xs) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

c(XTA
), TA < ∞,

∞
∑

s = 0
0, TA = ∞,

=
⎧⎪⎪⎨⎪⎪⎩

1, TA < ∞,
0, TA = ∞,

= 1|{TA < ∞},

using the notation (4.7) from Section 4.3. Now, its expected value is

wA(x) = E (WA ∣ X0 = x) = E (1|{TA < ∞} ∣ X0 = x) = P (TA < ∞ ∣ X0 = x) = hA(x).

Theorem 4.6 then yields the asserted system (4.5).

4.4 Random walk on finite state space and gambler’s ruin

Consider a random walk on state space S = {0,1, . . . ,M} which moves up with probability p
and down with probability 1 − p, and gets absorbed at the boundary states 0 and M . This is a
Markov chain with transition probabilities P (x,x+1) = p and P (x,x−1) = 1−p for 1 ≤ x ≤M −1,
together with P (0,0) = 1 and P (M,M) = 1, and all other transition probabilities being zero.

0 1 2 3 4 5

p p p

p

1 − p
1 − p 1 − p 1 − p

1 1

Figure 4.1: Transition diagram of a random walk with M = 5.
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In gambling context, the associated Markov chain X = (X0,X1,X2, . . .) represents the wealth
Xt of a gambler after t rounds in a game where the gambler wins 1 EUR with probability p and
loses 1 EUR with probability 1 − p, and where all game rounds are independent of each other.
The game ends17 if the wealth Xt hits the value M (gambler’s target) or the value 0 (gambler’s
money is all gone, and they are ruined).

A basic question here is to determine the probability of the gambler hitting the target, given
that the initial wealth equals a given value x. That is, we wish to compute the probability

h(x) = P (Xt = M for some t ≥ 0 ∣ X0 = x). (4.9)

To avoid trivialities, we assume that p ∈ (0,1). Then, the Markov chain surely eventually hits
either 0 or M , and we see that the probability of the gambler’s eventual ruin equals

1 − h(x).

The probability h(x) in (4.9) equals the hitting probability hA(x) in (4.4) for the singleton
set A = {M}. Hence, by Theorem 4.4 the function h(x) solves the system of equations (4.5),
which in the present case take the form

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

h(0) = h(0),
h(x) = (1 − p) ⋅ h(x − 1) + p ⋅ h(x + 1), 0 < x <M,

h(M) = 1.

The first equation above tells us nothing, but the problem formulation makes it clear that
h(0) = 0. Hence, we are left with finding the solution to the equation

h(x) = (1 − p) ⋅ h(x − 1) + p ⋅ h(x + 1), 0 < x <M, (4.10)

with boundary conditions h(0) = 0 and h(M) = 1. There are various ways to solve these
equations: one can use a computer (extra exercise), an ansatz (that we make below), or one can
apply generating functions (see Section 6).

Reminder. Consider a homogeneous n:th order linear difference equation

f(x + n) = a1 f(x + n − 1) + a2 f(x + n − 2) + ⋯ + an−1 f(x + 1) + an f(x). (4.11)

The characteristic equation is the polynomial equation

p(z) = zn − a1 zn−1 − a2 zn−2 − ⋯ − an−1 z − an = 0.

If the roots λ1, λ2, . . . , λn of the characteristic polynomial p(z) are all distinct, then all solutions
of (4.11) have the form

f(x) = c1 λx1 + ⋯ + cn λxn,

where the coefficients c1, . . . , cn can be determined from boundary conditions. ♣

Let us first solve h(x) in the asymmetric case where p ∈ (0,1) is such that p ≠ 1/2. For-
mula (4.10) is a second-order homogeneous linear difference equation, for which it is useful to
make the ansatz h(x) = zx for some real number z > 0. Substituting this into (4.10) leads to

zx = (1 − p) ⋅ zx−1 + p ⋅ zx+1,

17The expected hitting time will be computed in Example 4.9.
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and dividing both sides by zx−1 yields the quadratic equation (characteristic equation)

pz2 − z + (1 − p) = 0,

which has two distinct roots α = 1−p
p and β = 1. By the theory of linear difference equations, we

know that all solutions to (4.10) have the form

h(x) = c ⋅ αx + d ⋅ βx

for some constants c and d. The boundary conditions h(0) = 0 and h(M) = 1 now become

c + d = 0,

c ⋅ αM + d = 1,

from which we can solve d = −c and c = 1/(αM − 1), and obtain the solution

h(x) = αx − 1
αM − 1

. (4.12)

To obtain the solution of (4.10) in the symmetric case with p = 1/2, we may inspect how the
solution of (4.12) behaves as a function of p as p→ 1/2. In this case, we have

α = 1 − p
p

Ð→ 1, as p→ 1/2.

and by l’Hôpital’s rule, it follows that

αx − 1
αM − 1

Ð→ x

M
, as α → 1.

This solution can also be derived by making an ansatz of the form h(x) = c + dx and solving c
and d from the boundary conditions. We may now formulate our findings as follows.

Theorem 4.7 (Gambler’s ruin). The probability that a random walk on {0,1, . . . ,M}
described in Figure 4.1 with p ∈ (0,1) started at x eventually hits M equals

h(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1−pp )
x
− 1

(1−pp )
M
− 1

, p ≠ 1/2,

x

M
, p = 1/2.

The main message of Theorem 4.7 is that when p ≤ 1/2, the probability of ever reaching a
state M from any initial state x tends to zero as M → ∞ (a greedy player desiring an infinite
profit). In other words, the probability of eventual ruin 1 − h(x) tends to one. See Figure 4.2.

Example 4.8 (Gambling: doubling strategy). In a game of roulette where a bet of 1 EUR is
placed on the ball falling into one of 18 red pockets out of 37 pockets, the probability of winning
1 EUR is p = 18/37, and the probability of losing 1 EUR is 1− p. If a gambler targets to double
their initial wealth x, then the probability h(x) of successfully ending the game is obtained by
applying Theorem 4.7 with M = 2x: ∎

Initial wealth (EUR) 1 5 10 20 50
Success probability 0.4865 0.4328 0.3680 0.2533 0.0628
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Figure 4.2: For random walk started at x = 1, plotting the “hitting the target” probability
h(1) = ((1−pp ) − 1)((

1−p
p
)M − 1)−1 of Theorem 4.7 as a function of M for some values of p < 1/2

(left) and p = 1/2 (right). As M →∞, we see that it tends to zero.

20 40 60 80 1000.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4.3: Plotting h(1) = ((1−pp ) − 1)((
1−p
p
)M − 1)−1 of Theorem 4.7 as a function of M for

some values of p > 1/2. As M →∞, we see that it tends to a non-zero value.

Example 4.9 (Expected duration of the game). Consider the expected passage time

k(x) = E (T{0,M} ∣ X0 = x)

to A = {0,M} by a random walk on {0,1, . . . ,M} described in Figure 4.1 with p ∈ (0,1) started
at X0 = x. Theorem 4.1 gives the system of equations (4.2) for k(x), which take the form

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k(0) = 0,

k(x) = 1 + (1 − p) ⋅ k(x − 1) + p ⋅ k(x + 1), 0 < x <M,

k(M) = 0.

This is an inhomogeneous second order linear difference equation. E.g. using a computer, we can
solve in the asymmetric case

k(x) = ( x

1 − 2p
) − (

(1−pp )
x
− 1

(1−pp )
M
− 1
)( M

1 − 2p
), p ≠ 1/2,

and in the symmetric case

k(x) = (M − x)x, p = 1/2.

We see that when p ≥ 1/2, the expected passage time k(x) → ∞ as M → ∞, while for p < 1/2,
the limit is finite: k(x) → x

1−2p as M →∞. We will get back to this in Section 5. ∎
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5 Markov chains and random walks in countably infinite spaces

5.1 Basic definitions: generalization of finite state spaces

We will now study stochastic discrete-time processes with values in a general countable (finite
or countably infinite) state space S. The assumption that S is countable (numeroituva) means
that its elements can be numbered using positive integers according to S = {x1, x2, . . .}, or
equivalently, there exists a surjection from the set of natural numbers onto S.

Example 5.1. The following sets can be shown to be countably infinite:

▷ The set Z of integers, the set Q of rational numbers, and the set N of natural numbers.

▷ The set Zd of vectors (x1, . . . , xd) with integer coordinates xj ∈ Z for all j.

▷ The set of finite strings composed of letters from a finite alphabet.

The following sets can be shown to be uncountably infinite:

▷ The set R of real numbers and the set C of complex numbers.

▷ The interval [0,1] of real numbers.

▷ The set of infinite binary sequences x = (x1, x2, . . .) with xj ∈ {0,1} for all j.

∎

The sum (summa) of a nonnegative function f ∶ S → [0,∞) on a countably infinite space
S = {x1, x2, . . .} is defined18 by

∑
x ∈S

f(x) =
∞
∑
j = 1

f(xj) = lim
n→∞

n

∑
j = 1

f(xj).

The theory of nonnegative sums tells that the value of the sum does not depend on how the
elements of S are labelled.

Definition.

▷ A probability distribution (todennäköisyysjakauma) on S is a function µ ∶ S → [0,1]
such that the law of total probability holds:

∑
x ∈S

µ(x) = 1. (5.1)

In the context of Markov chains, we interpret probability distribution µ as a (possibly
infinite) row-vector indexed by the states x ∈ S.

▷ A transition matrix (siirtymämatriisi) on S is a function P ∶ S ×S → [0,1] such that

∑
y ∈S

P (x, y) = 1, for all x ∈ S,

which means that each row sum of the (infinite) square matrix P equals 1.

18The sum always exists because ∑n
j=1 f(xj) is non-decreasing in n, but it may be infinite: ∑∞j=1 f(xj) ∈ [0,∞].
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Matrix multiplication with countably infinite matrices is defined similarly as in the finite case.

▷ If µ is a probability distribution on S, we define µ ⋅ P by the formula

(µ ⋅ P )(y) = ∑
x ∈S

µ(x) ⋅ P (x, y), for all y ∈ S.

▷ The matrix product R = P ⋅Q of transition matrices P,Q ∶ S × S → [0,1] is defined by

R(x, z) = ∑
y ∈S

P (x, y) ⋅Q(y, z), for all x, z ∈ S.

▷ Matrix powers are defined in the usual way as P 0 = I and recursively P t+1 = P t ⋅P for t ∈ N0,
where the identity matrix I ∶ S × S → [0,1] is given by

I(x, y) = δx(y) =
⎧⎪⎪⎨⎪⎪⎩

1, if x = y,
0, if x ≠ y.

Lemma 5.2. If µ is a probability distribution and P,Q are transition matrices on S, then

▷ µ ⋅ P is a probability distribution on S,

▷ R = P ⋅Q is a transition matrix on S,

▷ P t is a transition matrix on S for all t ∈ N0.

Proof. Clearly (µ ⋅P )(x) ≥ 0 for all x ∈ S. Moreover, by changing the order of summation19, we
see that the vector µ ⋅ P = {(µ ⋅ P )(x) ∶ x ∈ S} satisfies

∑
y ∈S
(µ ⋅ P )(y) = ∑

y ∈S
∑
x ∈S

µ(x) ⋅ P (x, y) = ∑
x ∈S

µ(x)( ∑
y ∈S

P (x, y)) = 1.

Hence, µ ⋅ P is a probability distribution on S.
Clearly R(x, z) ≥ 0 for all x, z ∈ S. By changing the order of summation, we find that

∑
z ∈S

R(x, z) = ∑
z ∈S
∑
y ∈S

P (x, y) ⋅Q(y, z) = ∑
y ∈S

P (x, y) ⋅ ∑
z ∈S

Q(y, z) = 1.

Hence, R = P ⋅Q is a transition matrix on S. Lastly, one can use this and mathematical induction
to prove that P t is a transition matrix on S for all t ∈ N0.

Markov chains on countably infinite state spaces are defined precisely in the same way as in
Section 1. The only difference is that the transition matrix P may have infinitely many rows
and columns. We can view the infinite transition matrix as a function P ∶ S × S → [0,1] which
maps a pair of states (x, y) into the probability

P (x, y) = P (Xt+1 = y ∣ Xt = x), for each t ∈ N0.

(The proof of Theorem 1.1 can also be adjusted to the present setting.)

19Allowed when the terms are nonnegative by so-called Fubini-Tonelli theorem [Kyt20, Thm. IX.9(a)].

45



Definition. An S-valued stochastic process (random sequence) X = (X0,X1,X2, . . .) is
a (time-homogeneous) Markov chain (Markov-ketju) with state space S and transition
matrix P if X is “conditionally independent of the past”, i.e.,

P (Xt+1 = y ∣ Xt = x, Ht−) = P (x, y), (5.2)

for all states x, y ∈ S, all times t ≥ 0, and for all events Ht− = {X0 = x0, . . . ,Xt−1 = xt−1}
such that P (Xt = x, Ht−) > 0.

Theorem 5.3 (Time-dependent distribution). The distribution

µt(x) = P (Xt = x), x ∈ S,

of any (time-homogeneous) Markov chain X = (X0,X1,X2, . . .) at an arbitrary time in-
stant t ≥ 0 can be computed from the initial distribution µ0 using the formula

µt = µ0 ⋅ P t, (5.3)

where P t is the t:th power of the transition matrix P .

The probability that X moves from state x to state y during t time steps equals

P (Xt = y ∣ X0 = x) = P t(x, y), for all x, y ∈ S. (5.4)

Proof. After inspecting them, we can see that the proofs of Theorems 1.5 and 1.7 work also for
countably infinite state spaces. This implies (5.3) and (5.4).

In Chapter 2, we investigated long-term behavior of finite-state Markov chains. Let us return
to these questions in the case of countably infinite state spaces:

1. Do the time-dependent distributions µt have a limit as t → ∞ (in a sense detailed below)?
Does such a limit, if exists, depend on the initial distribution µ0?

2. Does an invariant distribution π satisfying π ⋅ P = π exist, and is it unique?

As we shall see in this chapter, the answers to these questions are more delicate in the case
of countably infinite state spaces.

Let us begin with the basic definitions, which are similar to the case of finite state spaces.

Definition. Starting from a given initial distribution µ0, if the limit

lim
t→∞

µt(x) = µ∞(x), for all x ∈ S,

exists and defines a probability distribution, then we say that µ∞ is the limiting distribu-
tion (rajajakauma) of the Markov chain started at the initial distribution µ0.
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Definition. A probability distribution π = (π(x) ∶ x ∈ S) is called an invariant distri-
bution (tasapainojakauma) of a transition matrix P and the corresponding Markov chain
X = (X0,X1,X2, . . .) if it satisfies the balance equations (tasapainoyhtälöt)

π ⋅ P = π.

Such a distribution π is also called a stationary distribution (stationaarinen jakauma).

▷ We learned in Theorem 2.2 that any limiting distribution µ∞ is also an invariant distribu-
tion. (The same proof works also for countably infinite state spaces, remembering that we
require µ∞ to be a probability distribution.)

▷ In particular, starting from an invariant initial distribution µ0 = π, we find using Theo-
rem 5.3 and the associativity of matrix multiplication that

µt = π ⋅ P t = (π ⋅ P ) ⋅ P t−1 = π ⋅ P t−1 = ⋯ = π ⋅ P = π.

Hence, for a Markov chain with a random initial state X0 ∼ π distributed according to an
invariant distribution, the distribution of Xt remains invariant for all time instants t.

5.2 Invariant distribution, recurrence, and irreducibility

The long-term analysis of Markov chains on infinite state spaces has one fundamental difference
compared to Markov chains on finite spaces:

an invariant distribution might not exist ,

and neither does irreducibility guarantee the existence of an invariant distribution. (Irreducibility
only guarantees uniqueness, see Theorem 5.5.) The problem is that, while one can always solve
for a left eigenvector of the transition matrix P with eigenvalue 1 (as in the proof of Theorem 2.1),
one still might not be able to normalize it to give a probability distribution.

Every irreducible Markov chain on a finite state space visits all states infinitely often with
probability one. In infinite spaces, this may or may not be the case. To study this, a key
quantity is the positive passage time (positiivinen kulkuaika) of X into set A ⊂ S,

T +A = min{t ≥ 1 ∶ Xt ∈ A}, (5.5)

with the notational convention that TA = ∞ if the process X never visits A after starting20. If
the set A = {y} is a singleton, we simply write T+{y} = T

+
y .

An invariant distribution can also be sought by noticing that

π̃(x) = 1

E (T+x ∣ X0 = x)
(5.6)

satisfies the balance equations (2.1):

π̃ ⋅ P = π̃.

In finite state spaces one can normalize π̃ to find a probability distribution π satisfying the system
of equations (2.1, 2.3). However, the normalization (2.3) might not be possible in general (see
the random walk in Section 5.6 for an example): it is possible that ∑

x ∈S
π̃(x) = ∞.

20Note that T +A differs from the passage time TA in (4.1) in the sense that TA = 0 if the Markov chain already
starts from A, while T +A is always nonzero.
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Definition. For two states x, y ∈ S, the visiting probability (vierailutodennäköisyys) of X
to y after started at x is denoted as

ρ(x, y) = P (Xt = y for some t ≥ 1 ∣ X0 = x) = P (T +y < ∞ ∣ X0 = x).

In particular, the return probability (paluutodennäköisyys) of X to x is

ρ(x,x) = P (Xt = x for some t ≥ 1 ∣ X0 = x) = P (T +x < ∞ ∣ X0 = x).

State x is called

▷ recurrent (palautuva) if it has return probability ρ(x,x) = 1, and

▷ transient (väistyvä) otherwise.

Recall that, given a transition matrix P , we denote x ↝ y if the corresponding transition
diagram contains a (directed) path from x to y. We define the components (komponentit) of the
corresponding Markov chain X to be the equivalence classes

C(x) = {y ∈ S ∶ y↭ x}, x ∈ S,

where x↭ y if and only if x↝ y and y ↝ x. As before, we say that transition matrix P and the
corresponding Markov chain X are irreducible (redusoitumaton) if there is only one component.

We use the next result to prove the Markov Chain Convergence Theorem in the next section.

Theorem 5.4. If an irreducible Markov chain on a countable state space S has an in-
variant distribution π, then

1. all states have positive mass:

π(y) > 0, for all y ∈ S, (5.7)

2. all states are recurrent, and

3. with probability one, the Markov chain visits every state infinitely often,
regardless of the initial state.

For mathematically oriented readers, we prove Theorem 5.4 in Section 5.7.

Theorem 5.5 (Uniqueness of invariant distribution). Every irreducible Markov chain on
a countable state space admits at most one invariant distribution π.

Proof. The Convergence Theorem 5.6 (discussed below) gives the claim if the Markov chain is
irreducible and aperiodic. If the Markov chain is periodic, we can modify it to become aperiodic
by considering the transition matrix P̃ = 1

2(P+I). Note that π⋅P = π is equivalent to π⋅P̃ = π.

5.3 Long-term behavior: Convergence Theorem

A key result in the theory of Markov chains is the Convergence Theorem 5.621.
21It is a generalization of Theorem 2.14.
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Theorem 5.6 (Convergence Theorem). Consider an irreducible and aperiodic Markov
chain X on a countable state space S. Then, X admits at most one invariant distribution.
Moreover, if the invariant distribution π exists, then it also equals the limiting distribution,

lim
t→∞

P (Xt = y ∣ X0 = x) = π(y), for all x, y ∈ S,

which is independent of the initial state of the Markov chain X.

The proof relies on a very useful general technique known as stochastic coupling [LPW08,
Section 5]. Note that if ∣S∣ < ∞, then the invariant distribution π always exists (Theorem 2.1).
One issue with infinite state spaces is that the Markov chain can “escape” to infinity and fail to
have an invariant distribution. See the random walk example in Section 5.6 and Figure 5.1.

Figure 5.1: Simulated paths of the random walk on nonnegative integers N0 defined by transition
matrix (5.16) for p = 0.4 (blue), p = 0.5 (black), p = 0.6 (red). Can you observe different behavior
depending on whether p < 1/2 or p > 1/2? We discuss this in Section 5.6.

Proof sketch. Let X and Y be independent copies of our Markov chain, both having transition
matrix P , and such that X has initial distribution µ0 and Y has some initial distribution. Let

τ = min{t ≥ 0 ∶ Xt = Yt} (5.8)

be the first time instant (possibly ∞) at which the paths of the Markov chains meet each other.
Observe next that, for any s ≤ t, we have the symmetric relations

P (Xt = y, τ = s) = ∑
x ∈S

P (τ = s,Xs = x,Xt = y)

= ∑
x ∈S

P (Xt = y ∣ τ = s,Xs = x) ⋅ P (τ = s,Xs = x)

= ∑
x ∈S

P (Yt = y ∣ τ = s, Ys = x) ⋅ P (τ = s, Ys = x) [by (5.8)]

= P (Yt = y, τ = s), y sinS.

By summing this over s ≤ t, it follows that

P (Xt = y, τ ≤ t) = P (Yt = y, τ ≤ t),
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which implies that we can bound the differences of the time-dependent probabilities of the chains
X and Y by the tail probability of their meeting time τ :

∑
y ∈S
∣P (Xt = y) − P (Yt = y)∣ = ∑

y ∈S
∣P (Xt = y, τ > t) − P (Yt = y, τ > t)∣

≤ ∑
y ∈S

P (Xt = y, τ > t) + ∑
y ∈S

P (Yt = y, τ > t)

= 2P (τ > t). (5.9)

(Note that up to this point of the proof, we have not used any invariant distribution π yet.)
Next, when X is started at a deterministic point x and Y is started at a random initial state

distributed according to an invariant distribution π, the upper bound (5.9) becomes

∑
y ∈S
∣ P (Xt = y ∣ X0 = x) − π(y) ∣ = ∑

y ∈S
∣P t(x, y) − π(y)∣ ≤ 2P (τ > t). (5.10)

To finish the proof, it suffices to show that the upper bound P (τ > t) → 0 as t → ∞, which
is equivalent to showing that P (τ < ∞) = 1. For this purpose, we use the Markov chain
{(Xt, Yt) ∶ t ≥ 0} on the product space S × S, with transition matrix P̃ defined by

P̃ ((x1, x2), (y1, y2)) = P (x1, y1) ⋅ P (x2, y2).

It is straightforward to verify that π̃(x, y) = π(x) ⋅ π(y) is an invariant distribution of P̃ . It is
also possible to show that P̃ is irreducible (here we need the irreducibility and aperiodicity of
P — think of what can happen in the periodic case!). In terms of the product Markov chain
(X,Y ), we see that τ is the first passage time TD of the product chain into the diagonal set
D = {(x, y) ∈ S × S ∶ x = y}, which is clearly bounded from above by TD ≤ T(x,x) for any x ∈ S.
By Theorem 5.4, we know that T(x,x) is finite with probability one, and hence so is τ = TD.

Remark. The idea of the proof of Theorem 5.6 can in certain cases be used also to argue
that the invariant (and limiting) distribution exists. Indeed, by bounding the so-called total
variation distance (defined in Equation (12.12) in Chapter 12) of the two copies of the Markov
chains started at two arbitrary initial distributions by the tail probability of their meeting time
τ , one can derive the existence of the limit. This requires, however, strong enough control of the
meeting time τ . Students majoring in mathematics are recommended to look into the lecture
notes [LPW08] for more details about the coupling method.

5.4 Reversibility and detailed balance equations

Recall that in the case of finite state spaces, it was possible to find an invariant distribution
π by solving the balance equations (2.1) under the normalization condition (2.3). For infinite
state spaces, these equations (2.1, 2.3) become an infinite system of linear equations and do not
guarantee that a solution exists. It is sometimes handy to consider another infinite set of linear
equations — the detailed balance equations (5.11) given below.

Definition. A transition matrix P and the corresponding Markov chain X is called
reversible (kääntyvä) with respect to a probability distribution π (π-reversible) if the
following detailed balance equations (pareittaiset tasapainoyhtälöt) hold:

π(x) ⋅ P (x, y) = π(y) ⋅ P (y, x), for all x, y ∈ S. (5.11)

Note that reversibility also includes the condition that π is a probability distribution, i.e.,

∑
x ∈S

π(x) = 1. (5.12)
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The detailed balance equations (5.11) are a stronger condition than the balance equa-
tions (2.1). Indeed, the next result shows that the former implies the latter.

Theorem 5.7 (Reversibility guarantees existence of invariant distribution). If transition
matrix P and the corresponding Markov chain X is π-reversible with respect to a proba-
bility distribution π, then π is an invariant distribution of P and X.

Proof. If the detailed balance equations (5.11) hold, then, for all y ∈ S, we have

(π ⋅ P )(y) = ∑
x ∈S

π(x) ⋅ P (x, y)

= ∑
x ∈S

π(y) ⋅ P (y, x) = π(y) ∑
x∈S

P (y, x) = π(y), for all y ∈ S.

Hence π ⋅ P = π, which shows that π is an invariant distribution of P and X.

Corollary 5.8 (Summary of irreducible/reversible/aperiodic cases). Suppose that Markov
chain X with transition matrix P on countable state space S is irreducible and π-reversible
for a probability distribution π. Then, π is the unique invariant distribution of X. It can
be determined as the unique solution π to detailed balance equations (5.11):

π(x) ⋅ P (x, y) = π(y) ⋅ P (y, x), for all x, y ∈ S,

and the normalization (5.12):

∑
x ∈S

π(x) = 1.

Moreover, in the aperiodic case, π also equals the unique limiting distribution,

lim
t→∞

P (Xt = y ∣ X0 = x) = π(y), for all x, y ∈ S.

Proof. This is an immediate consequence of Theorems 5.6, 5.5, and 5.7.

Reversibility can be interpreted as follows. Consider a Markov chain X with transition
matrix P which is π-reversible. Pick the initial distribution µ0 of X to be π:

X0 ∼ π, that is, P [X0 = x] = π(x), for all x ∈ S.

Since by Theorem 5.7, π is an invariant distribution of P and X, we have

Xt ∼ π, that is, P [Xt = x] = π(x), for all x ∈ S and for all t ≥ 0.

By applying the detailed balance equations (5.11), we find that

P (X0 = x0, X1 = x1, . . . , Xt = xt) = π(x0) ⋅ P (x0, x1) ⋅ P (x1, x2)⋯P (xt−1, xt)
= P (x1, x0) ⋅ π(x1) ⋅ P (x1, x2)⋯P (xt−1, xt)
= . . .

= P (x1, x0) ⋅ P (x2, x1)⋯P (xt, xt−1) ⋅ π(xt)
= π(xt) ⋅ P (xt, xt−1)⋯P (x1, x0)
= P (Xt = x0, Xt−1 = x1, . . . , X0 = xt).
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From this we may conclude that a π-reversible Markov chain with initial distribution π appears
statistically the same if observed backwards in time.

5.5 Birth–death chains

An important class of reversible Markov chains is discussed next.

Definition. A birth–death chain (syntymiskuolemisketju) is a Markov chain on a state
space S ⊂ N0 with a transition matrix P such that

P (x, y) = 0 for ∣x − y∣ > 1.

Examples of birth–death chains include random walk on finite state space discussed in Sec-
tion 4.4, and random walk on N0, discussed in Section 5.6. Importantly, a birth–death chain can
only move to its nearby states, which implies that the flow of mass from each state can only go
to two directions. As a consequence, birth–death chains are reversible whenever they admit an
invariant distribution, as the following result, Theorem 5.9, shows.

Theorem 5.9 (Invariant distribution for birth–death chain). If a birth–death chain has
an invariant distribution π, then the chain is π-reversible.

The key idea to prove Theorem 5.9 is the conservation-of-mass property encoded into the
balance equations, and refined by the detailed balance equations (5.11) — see Lemma 5.10.

Proof. We have to show that the balance equations (5.11) hold for π. Fix a state s ∈ S.

▷ If x = y, then (5.11) is trivially true.

▷ When ∣x − y∣ > 1, both sides of (5.11) are zero, so the detailed balance is also trivially true.

▷ Hence, the only case that we need to investigate is the one where we assume that x, y ∈ S
are such that y = x + 1. (The case y = x − 1 is symmetric to this.) We want to prove that

π(x) ⋅ P (x,x + 1) = π(x + 1) ⋅ P (x + 1, x). (5.13)

The key observation is that for any birth–death chain, the sets Ax = {v ∈ S ∶ v ≤ x} and
S ∖Ax = {u ∈ S ∶ u ≥ x+ 1} are connected in the transition diagram only via transitions between
the states x and x+ 1. By the conservation of probability mass, the flow of mass from x to x+ 1
equals the flow of mass from x + 1 to x (see Lemma 5.10 for a general version of this property).

⋯ x x + 1 ⋯

P (x,x + 1)

P (x + 1, x)

Recall that we assumed that π is an invariant distribution. The balance equation π = π ⋅P reads

π(v) = ∑
u ∈S

π(u) ⋅ P (u, v), v ∈ S,
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and by summing over v ∈ Ax, we find that22

∑
v ∈Ax

π(v) = ∑
u ∈S

π(u) ∑
v ∈Ax

P (u, v)

= ∑
u ∈S∖Ax

π(u) ∑
v ∈Ax

P (u, v) + ∑
u ∈Ax

π(u) ∑
v ∈Ax

P (u, v),

which after rearranging and relabeling indices gives

∑
z ∈Ax

π(z) (1 − ∑
w ∈Ax

P (z,w))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= ∑

u ∈S∖Ax

P (z,u)

= ∑
u ∈S∖Ax

π(u) ∑
z ∈Ax

P (u, z)

Ô⇒ ∑
z ∈Ax

∑
u ∈S∖Ax

π(z) ⋅ P (z, u) = ∑
u ∈S∖Ax

∑
z ∈Ax

π(u) ⋅ P (u, z) (5.14)

Now, recall that P (a, b) can only be nonzero when ∣b− a∣ ≤ 1. The only pair (z, u) ∈ Ax ×S ∖Ax

in (5.14) satisfying ∣z −u∣ ≤ 1 is z = x and u = x+1, which gives the only possibly nonzero terms:

(5.14) Ô⇒ π(x) ⋅ P (x,x + 1) = π(x + 1) ⋅ P (x + 1, x).

This shows the desired equation (5.13).

The idea of the proof above can be cast into the following useful more general result, con-
cerning the probability mass flow at a set A. In essence, in statistical equilibrium, the flow
of probability mass away from A equals the flow of probability mass into A. As such, this
generalizes Equation (2.4), which covers the case where A consists only of one state, A = {y}.

Lemma 5.10 (Extended balance equations). Let X = (X0,X1,X2, . . .) be a Markov chain
on a (finite or countably infinite) state space S with transition matrix P . If π is an
invariant distribution for X, then for any subset A ⊂ S of states, we have

∑
x ∈A

∑
y ∈S∖A

π(x) ⋅ P (x, y) = ∑
y ∈S∖A

∑
x ∈A

π(y) ⋅ P (y, x). (5.15)

Proof. By summing the balance equation π = π ⋅ P over v ∈ A, we find that

∑
v ∈A

π(v) = ∑
u ∈S

π(u) ∑
v ∈A

P (u, v)

= ∑
u ∈S∖A

π(u) ∑
v ∈A

P (u, v) + ∑
u ∈A

π(u) ∑
v ∈A

P (u, v),

which after rearranging and relabeling indices gives

∑
x ∈A

π(x) (1 − ∑
w ∈A

P (x,w))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= ∑

y ∈S∖A
P (x,y)

= ∑
y ∈S∖A

π(y) ∑
x ∈A

P (y, x)

Ô⇒ ∑
x ∈A

∑
y ∈S∖A

π(x) ⋅ P (x, y) = ∑
y ∈S∖A

∑
x ∈A

π(y) ⋅ P (y, x),

as desired.

22Here, ∑
z ∈Ax

P (u, z) is the flow of mass from state u ∈ S ∖Ax into the component Ax.
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5.6 Random walk on the nonnegative integers

An irreducible Markov chain on a finite state space always has a unique invariant distribution π
(by Theorem 2.8). If the Markov chain is also aperiodic, then the distribution µt of Xt converges
to π as t→∞, regardless of the initial state (by Theorem 2.14). In the context of infinite state
spaces, even the invariant distribution π might not exist in general, as we shall see shortly.

Let us consider the following generalization of the random walk in Section 4.4. A particle
moves in the infinite set N0 = {0,1,2, . . .} so that at every time step the particle moves from
state x ≥ 1 to the right with probability p and to the left with probability 1 − p, independently
of the past steps. With the boundary condition P (0,0) = 1 − p, we get the transition diagram

0 1 2 3 4 ⋯

p p p p p

1 − p 1 − p 1 − p 1 − p 1 − p

1 − p

and the infinite transition matrix

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − p p 0 ⋯
1 − p 0 p 0 ⋯
0 1 − p 0 p 0 ⋯
0 0 1 − p 0 p 0 ⋯
0 0 0 1 − p 0 p 0 ⋯
⋮ ⋮ ⋱ ⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.16)

From the transition diagram, we see that P is irreducible for all p ∈ (0,1). In addition, P (0,0) > 0
implies that P is aperiodic.

5.6.1 Invariant distribution

Let us first study whether or not this random walk has an invariant distribution. It is an instance
of a birth–death chain, so by Theorem 5.9, any possible invariant distribution π of P must satisfy
the detailed balance equations (5.11):

π(x) ⋅ P (x,x + 1) = π(x + 1) ⋅ P (x + 1, x), x ≥ 0,

or equivalently,

p ⋅ π(x) = (1 − p) ⋅ π(x + 1), x ≥ 0,

From this, we find that π(1) = π(0)( p
1−p) and π(2) = π(0)( p

1−p)
2, and in general,

π(x) = ( p

1 − p
)
x
⋅ π(0), x ≥ 0.

In order for π to be a probability distribution, it must satisfy the law of total probability

∑
x ∈S

π(x) = 1.

If p < q, or equivalently p < 1/2, this normalisation is possible by choosing π(0) = 1 − p
1−p .

However if p ≥ 1/2, this is not possible. We conclude that:
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Case Irreducible Aperiodic Recurrent Invariant distribution
p ∈ (0,1/2) Yes Yes Yes Yes (unique)
p = 1/2 Yes Yes Yes Does not exist

p ∈ (1/2,1) Yes Yes No Does not exist

Table 1: Properties of the random walk on nonnegative integers N0 defined by (5.16).

▷ If p < 1/2, the unique invariant distribution of the random walk is the geometric
distribution

π(x) = (1 − p

1 − p
)( p

1 − p
)
x
, on N0 = {0,1,2, . . .}.

▷ If p ≥ 1/2, the random walk does not have an invariant distribution.

5.6.2 Recurrence and transience

Let us then investigate how the random walk behaves when p ≥ 1/2. We study the question
whether or not it ever returns to state 0 after leaving it: so we investigate the return probability

ρ(0,0) = P (Xt = 0 for some t ≥ 1 ∣ X0 = 0) = P (T+0 < ∞ ∣ X0 = 0).

Recall that state 0 is recurrent if and only if ρ(0,0) = 1 (and transient otherwise).
Now, it is useful to notice that by the Markov property, it follows by a similar first-step

analysis as in Chapter 4 (like23 in the proof of Theorem 4.1, but instead of taking just one
time-step, waiting for the first time that X is at state 1 after leaving from X0 = 0) that the
probability that the random walk ever returns to 0 can also be written as

ρ(0,0) = P (T0 < ∞ ∣ X0 = 1) = lim
M→∞

P (T0 < TM ∣ X0 = 1),

where Tx is the first passage time (4.1) into state x. Observe that P (T0 < TM ∣ X0 = 1) also equals
a gambler’s ruin probability with initial wealth 1 and target wealth M (like24 in Section 4.4),
so by Theorem 4.7, we can conclude that

P (T0 < TM ∣ X0 = 1) = 1 − h(1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1−pp ) − 1

(1−pp )
M
− 1

, p ≠ 1/2,

1

M
, p = 1/2.

Hence, the probability that the random walk returns to state 0 after leaving it equals

P (T0 < ∞ ∣ X0 = 1) =
⎧⎪⎪⎨⎪⎪⎩

1, p ≤ 1/2,
1−p
p , p > 1/2.

This means that the states of the random walk are

23Here, we may omit the hat notation used in the proof of Theorem 4.1, because the probabilities associated
to the future states of the random walk are anyway the same as for the initial random walk.

24Since we stop the random walk when it returns to state 0, the difference of the transition probabilities at
state 0 in this Chapter versus in Chapter 4 is insignificant for our computation here.
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▷ recurrent for p ≤ 1/2, and

▷ transient for p > 1/2.

The case p = 1/2 is special in that although the random walk eventually returns to every state,
one can show that the expected return time is infinite (see Example 4.9). Table 1 summarizes
key properties of the random walk. Figure 5.1 describes paths of the random walk.

5.7 Additional material on recurrence

This section contains useful results for return properties of Markov chains and the proof of
Theorem 5.4. It can be skipped when focusing on the core contents of this course. The material
here does not need any further mathematical background — and it is advised that students
majoring in mathematics and oriented to probability theory have a look at this section.

Lemma 5.11 (Recurrence). State x ∈ S is recurrent if and only if starting from any
initial state in C(x), state x is visited infinitely often with probability one.

Proof. Consider the event Ax that the Markov chain X visits state x only finitely many times.
By dividing according to the number of visits to x, we can write event Ax as a disjoint union

Ax =
∞
⋃

T = 0
{XT = x, Xs ≠ x for all s > T},

where T is the last time instant when X visits x. By the Markov property (5.2), it follows that

P (XT = x, Xs ≠ x for all s > T ) = P (XT = x) ⋅ P (Xs ≠ x for all s > T ∣ XT = x)
= P (XT = x) ⋅ P (T +x = ∞ ∣ X0 = x) [by (5.2)]
= P (XT = x) ⋅ (1 − ρ(x,x)).

Therefore, we obtain

P (Ax) =
∞
∑
T = 0

P (XT = x, Xs ≠ x for all s > T ) = (1 − ρ(x,x)) ⋅
∞
∑
T = 0

P (XT = x). (5.17)

Applying25 Theorem 2.9 in the component C(x), we know that for all z ∈ C(x) there exists
T ∈ N such that P T (z, x) > 0. Therefore, the above sum has at least one nonzero term. Thus,

P (Ax) = 0 ⇐⇒ ρ(x,x) = 1. (5.18)

It remains to observe that P (Ax) = 0 means that its complementary event, that is, that state x
is visited infinitely often, has probability one. Thus, the equivalence (5.18) proves the claim.

Lemma 5.12. If x ∈ S is recurrent, then for all states y ∈ S which are reachable from x,
we have ρ(y, x) = 1.

(The proof of this lemma is technical, and can be skipped for the first reading.)

25Note that the proof of Theorem 2.9 works also for countably infinite state spaces.
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Proof. Let t ≥ 0 be the length of the shortest path from x to y in the transition diagram of the
Markov chain. Then, the transition diagram contains a t-hop path x = x0 → x1 → ⋯ → xt = y
which is such that x does not belong to {x1, . . . , xt} and

P (x0, x1) ⋅ P (x1, x2)⋯P (xt−1, xt) > 0. (5.19)

By the Markov property (5.2), the probability that after starting at x, the Markov chain never
returns to x can be bounded as

1 − ρ(x,x) = P (T+x = ∞ ∣ X0 = x) = P (Xt ≠ x for all t ≥ 1 ∣ X0 = x)
≥ P (x0, x1) ⋅ P (x1, x2)⋯P (xt−1, xt) ⋅ P (T+x = ∞ ∣ X0 = y)
= P (x0, x1) ⋅ P (x1, x2)⋯P (xt−1, xt)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

> 0

⋅(1 − ρ(y, x)).

Because state x is recurrent by assumption, we have ρ(x,x) = 1. Hence, we see from (5.19) that
it must be the case that 1 − ρ(y, x) = 0, that is, ρ(y, x) = 1.

We summarize the main properties in the next theorem.

Theorem 5.13 (Recurrence in components). If state x ∈ S is recurrent, then for all states
y, z ∈ C(x) in the same component, the following hold.

▷ ρ(y, z) = 1.

▷ y (and z) is also recurrent.

▷ Starting from z, state y is visited infinitely often with probability one.

Note that the statements hold in particular for state x itself.

(The proof of this result is technical, and can be skipped for the first reading.)

Proof. We first prove the claims for z = x. Thanks to Lemma 5.11, it remains to show that any
state y ∈ C(x) is recurrent, that is, ρ(y, y) = 1. For this, we will study the expected number of
visits to state y overall, using the occupancy times from Section 1.6.

Recall that the occupancy time of state y for initial state x is

Gt(x, y) = E (Nt(y) ∣ X0 = x),

where Nt(y) is the number of visits to state y during the first t time steps (1.14). Because for
each state y the map t↦ Nt(y) is non-decreasing for times t = 0,1,2, . . ., the limit

lim
t→∞

Gt(x, y) = lim
t→∞

E (Nt(y) ∣ X0 = x) = E ( lim
t→∞

Nt(y) ∣ X0 = x)

= E (
∞
∑
s = 0

1|(Xs = y) ∣X0 = x)

=
∞
∑
s = 0

P (Xs = y ∣ X0 = x) ∈ [0,∞]

exists and takes values in the extended number set [0,∞]. We denote this limit as

G(x, y) =
∞
∑
s = 0

P (Xs = y ∣ X0 = x)

=
∞
∑
s = 0

P s(x, y) ∈ [0,∞]. [by (5.4) in Theorem 5.3]
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It represents the expected number of visits to state y starting from x for all time. In the literature,
G(x, y) is also called Green’s function, due to its relation to potential theory [LPW08].

Recall that we are going to prove that y is a recurrent state, that is, ρ(y, y) = 1. Our
computation in Equation (5.17) shows that the probability of the event Ay that the Markov
chain X visits state y only finitely many times is

(1 − ρ(y, y)) ⋅G(x, y) = (1 − ρ(y, y)) ⋅
∞
∑
T = 0

P (XT = y ∣ X0 = x) = P (Ay ∣ X0 = x) ∈ [0,1].

Hence, we see that if G(x, y) = ∞, then 1 − ρ(y, y) = 0. Thus, to finish the proof we aim at
showing that G(x, y) = ∞.

By irreducibility, Theorem 2.9 shows that there exists a time instant T ∈ N such that
P T (x, y) > 0. Hence, we may conclude using (5.4) and the Markov property (5.2) that

P s(x,x) ⋅ P T (x, y) ≤ P s+T (x, y), s ≥ 0.

Therefore, we obtain

G(x, y) ≥
∞
∑
s = 0

P t+s(x, y) ≥ P t(x, y) ⋅
∞
∑
s = 0

P s(x,x) = P t(x, y) ⋅G(x,x) = ∞,

since G(x,x) = ∞, as x is recurrent by assumption, and it is surely visited infinitely many times
by Lemma 5.11. This shows that G(x, y) = ∞ as well.

This proves the claims for z = x. To address the case of arbitrary y, z ∈ C(x), note that
Lemma 5.12 shows that ρ(y, x) = 1, and from the first part of the proof, we know that z also
recurrent and ρ(x, z) = 1. Hence, we obtain

ρ(y, z) ≥ ρ(y, x) ⋅ ρ(x, z) = 1.

The other claims for general z ∈ C(x) follow from the first part of the proof.

Proof of Theorem 5.4. Let us first verify the positivity (5.7). Because ∑x π(x) = 1, we can
choose a state x0 such that π(x0) > 0. By irreducibility, the transition diagram contains a path
from x0 to y, so that P t(x0, y) > 0, where t ∈ N0 is the length of the path. Because by the
balance equation π ⋅ P = π, we also have π ⋅ P t = π, and we obtain the positivity (5.7):

π(y) = ∑
x ∈S

π(x) ⋅ P t(x, y) ≥ π(x0) ⋅ P t(x0, y) > 0.

Equation (5.17) holds for any state y ∈ S and for any initial distribution of the chain.
Especially, if we denote by Pπ the distribution of the Markov chain corresponding to the initial
distribution µ0 = π, then because Pπ(XT = y) = π(y), it follows that

Pπ(Ay) = (1 − ρ(y, y)) ⋅
∞
∑
T = 0

Pπ(XT = y) = (1 − ρ(y, y)) ⋅
∞
∑
T = 0

π(y).

Because the terms of the sum do not depend on T , we must have π(y)(1−ρ(y, y)) = 0. Further-
more, by (5.7), we know that π(y) > 0, so we conclude that ρ(y, y) = 1 for any y ∈ S. Thus, all
states are recurrent. Lemma 5.11 then implies that they are also visited infinitely often.
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6 Generating functions

6.1 Why generating functions?

For any sequence a0, a1, a2, . . ., the function

F (z) =
∞
∑
k = 0

ak z
k

is called the generating function (generoiva funktio) of the sequence. Note that the series defining
F (z) might not necessarily converge anywhere.

Using generating functions one can solve easily many recursion problems, even if the solution
would be very complicated. To illustrate the method, let us look at a simple example. You can
find an extensive collection of examples and applications in the online book [Wil94].

Example 6.1 (Fibonacci sequence). The Fibonacci recurrence is

f0 = 0, f1 = 1, fk+1 = fk + fk−1, k = 1,2,3, . . . . (6.1)

We form the generating function

F (z) =
∞
∑
k = 0

fk z
k.

Plugging into F (z) the recurrence (6.1), we obtain

F (z) = f0 + f1 z +
∞
∑
k = 2

fk z
k

= f0 + f1 z +
∞
∑
ℓ = 1

fℓ+1 z
ℓ+1

= z +
∞
∑
ℓ = 1
(fℓ + fℓ−1) zℓ+1 [by (6.1)]

= z + z ⋅
∞
∑
k = 0

fk z
k + z2 ⋅

∞
∑
k = 0

fk z
k

= z + z ⋅ F (z) + z2 ⋅ F (z).

Rearranging this, we obtain

F (z) = z

1 − z − z2
.

So the generating function has quite a simple formula. Now, in order to find the coefficients
{fk ∶ k = 2,3,4, . . .}, we just have to expand F (z) as a power series. This can be done using the
partial fraction decomposition. Note that the denominator in F (z) is a polynomial

1 − z − z2 = −(z − α+)(z − α−)

with roots

α± =
−1 ±

√
5

2
.

Note that α+ − α− =
√
5. We write

F (z) = z

1 − z − z2
= −z
(z − α+)(z − α−)

= A(z)
z − α+

+ B(z)
z − α−
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for suitable A and B:

A

z − α+
+ B

z − α−
= A (z − α−) + B (z − α+)

(z − α+)(z − α−)
.

Equating this with F (z) gives

A (z − α−) + B (z − α+) = −z.

Evaluating at z = α+ gives

A = − α+
α+ − α−

=
√
5 − 5
10

,

and evaluating at z = α− gives

B = α−
α+ − α−

= −
√
5 − 5
10

.

Hence, we have

F (z) = A(z)
z − α+

+ B(z)
z − α−

= −
( α+
α+−α− )
z − α+

+
( α−
α+−α− )
z − α−

= 1

α+ − α−
( α−
z − α−

− α+
z − α+

).

Notice that we can write this in terms of the geometric series (geometrinen sarja):

α

z − α
= α

−α(1 − z
α)
= − 1

1 − z
α

= −
∞
∑
n = 0
( z
α
)
n
.

Therefore, we conclude that the generating function reads

F (z) = 1

α+ − α−
( α−
z − α−

− α+
z − α+

)

= 1

α+ − α−
( −

∞
∑
n = 0
( z
α−
)
n
+

∞
∑
n = 0
( z
α+
)
n
) = 1

α+ − α−

∞
∑
n = 0
(α−n+ − α−n− ) zn,

and we can directly read the coefficients

fn =
1

α+ − α−
(α−n+ − α−n− ) =

1√
5
(( 2

−1 +
√
5
)
n

− ( 2

−1 −
√
5
)
n

),

which we can double-check to indeed satisfy f0 = 0, f1 = 1, f2 = 1, f3 = 2, f4 = 3, etc. ∎

Reminder. Recall the useful formula for the geometric series:

∞
∑
n = 0

zn = 1 + z + z2 + z3 + ⋯ = 1

1 − z
, ∣z∣ < 1.

This is used very frequently when dealing with generating functions. Another useful and familiar
series is the exponential series (exponenttifunktion sarja)

ez =
∞
∑
n = 0

zn

n!
, z ∈ R, (6.2)

where n! = 1 ⋅ 2 ⋅ 3⋯(n − 1) ⋅ n. ♣
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6.2 Probability generating functions

We will next gather some of the key aspects of generating functions describing a probability dis-
tribution, which will be repeatedly applied in this course. For more background and applications
of generating functions in probability theory, see [GS97, Chapter 10].

Definition. The probability generating function (todennäköisyydet generoiva funktio) of
a random integer Y in N0 = {0,1,2, . . .} distributed according to P (Y = k) = pk is

ϕY (s) = E (sY ) =
∞
∑
k = 0

pk s
k, (6.3)

for those values of s ∈ R (or C) for which the sum on the right side converges.

▷ The probability generating function ϕY is always defined for s ∈ [−1,1]: since {pk ∶ k ∈ N0}
forms a probability distribution, we have

∞
∑
k = 0
∣pk∣ ⋅ ∣s∣k ≤

∞
∑
k = 0

pk = ϕY (1) = 1, s ∈ [−1,1]. (6.4)

▷ ϕY is also defined for other values of s if the probabilities pk vanish quickly enough for large
values of k.

▷ ϕY can also be defined for real-valued random variables Y via the formula ϕY (s) = E (sY ).

Theorem 6.2 (Probability generating function determines distribution). The values of

ϕY (s) =
∞
∑
k = 0

P (Y = k) ⋅ sk, s ∈ [−1,1],

determine the probability distribution of Y uniquely. Moreover, we havea

P (Y = k) =
ϕ
(k)
Y (0)
k!

, k = 0,1,2, . . . , (6.5)

and if ϕ′Y (1) exists, then it gives the expected value of Y ,

ϕ′Y (1) = E (Y ). (6.6)

aHere, ϕ(k)(s) = ( d
ds
)
kϕ(s) denotes the k:th derivative of the function ϕ.

▷ Note that in particular, P (Y = 0) = ϕY (0) ∈ [0,1] as a special case of (6.5).

▷ In fact, a slightly stronger property than (6.6) also holds: in general, we have

ϕ′Y (1−) = lim
s→1−

ϕ′Y (s) = E (Y ). (6.7)

Proof. We will see in Lemma 6.7 that the series (6.3) defining ϕY can be differentiated infinitely
many times. The probabilities (6.5) determine the probability distribution of Y uniquely. The
formula (6.6) is proved in Lemma 6.3 below.
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Let us collect some very useful properties of probability generating functions. The proofs of
some of them are beyond this course, but we will give a sketch proof for interested readers.

Lemma 6.3. We have

▷ ϕY (0) = P (Y = 0) ∈ [0,1] and

▷ ϕY (1) = 1.

Suppose that the derivatives ϕ′Y (s) and ϕ′′Y (s) exist at s = 1. Then, we have

▷ ϕ′Y (1) = E (Y ),

▷ ϕ′′Y (1) = E (Y 2) −E (Y ),

▷ var(Y ) = E (Y 2) − (E (Y ))2 = ϕ′′Y (1) + ϕ′Y (1) − (ϕ′Y (1))2.

We also have the scaling property

ϕY (sn) = ϕnY (s), for all n ∈ N. (6.8)

Proof. All claims are straightforward to compute from definition (6.3). First, we have

ϕY (s) =
∞
∑
k = 0

pk s
k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

p0 ⋅ 00 + 0 + 0 + ⋯ = p0, s = 0,
∞
∑

k = 0
pk = 1, s = 1,

and

ϕ′Y (s) =
∞
∑
k = 1

k pk s
k−1 and ϕ′′Y (s) =

∞
∑
k = 2

k(k − 1)pk sk−2. (6.9)

These evaluate at s = 1 to

ϕ′Y (1) =
∞
∑
k = 1

k pk =
∞
∑
k = 1

k ⋅ P (Y = k) = E (Y ),

and (since k2 = k when k = 1)

ϕ′′Y (1) =
∞
∑
k = 2

k2 pk −
∞
∑
k = 2

k pk =
∞
∑
k = 1

k2 pk −
∞
∑
k = 1

k pk = E (Y 2) − E (Y ).

The variance var(Y ) = E (Y 2)−(E (Y ))2 = ϕ′′Y (1)+ϕ′Y (1)−(ϕ′Y (1))2 follows from these. Lastly,
the scaling relation (6.8) also follows using definition (6.3):

ϕY (sn) = E ((sn)Y ) = E (snY ) = ϕnY (s).

Example 6.4 (Bernoulli random variable). For a Bernoulli random variable Y ∼ Ber(p) with
values {0,1}, that is,

P (Y = 1) = p and P (Y = 0) = 1 − p,

the probability generating function is the polynomial ϕY (s) = p s + (1 − p).
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One can also consider a Bernoulli random variable with different values, such as {0, n}, that is,

P (Y = n) = q and P (Y = 0) = 1 − q.

Its probability generating function is ϕY (s) = q sn+(1−q). (The probability generating function
depends not only on the probabilities but also on the values of the random variable.) ∎

Example 6.5 (Geometric random variable). For a geometric random variable Y with

P (Y = k) = (1 − p)k p,

the probability generating function is

ϕY (s) =
∞
∑
k = 0
(1 − p)k p sk = p

∞
∑
k = 0
((1 − p) s)k = p

1 − (1 − p) s
,

where we used the geometric series to evaluate the sum. From ϕY and Lemma (6.3), we easily
obtain the expected value

E (Y ) = ϕ′Y (1) = (
p(1 − p)

(1 − (1 − p) s)2
) ∣

s = 1
= 1 − p

p
,

and the variance

var(Y ) = ϕ′′Y (1) + ϕ′Y (1) − (ϕ′Y (1))2

= ( 2p(1 − p)2

(1 − (1 − p) s)3
+ p(1 − p)
(1 − (1 − p) s)2

− p2(1 − p)2

(1 − (1 − p) s)4
) ∣

s = 1
= 1 − p

p2
.

∎

Example 6.6 (Poisson random variable). For a Poisson distributed random variable Y ∼ Poi(λ)
with

P (Y = k) =
⎧⎪⎪⎨⎪⎪⎩

e−λ λk

k! , k ≥ 0,
0, k < 0.

the probability generating function is

ϕY (s) = e−λ
∞
∑
k = 0

λk

k!
sk = e−λ

∞
∑
k = 0

(λs)k

k!
= e−λ

∞
∑
k = 0

(λs)k

k!
= e−λ eλs = eλ(s−1),

where we used the series expansion (6.2) of the exponential function to evaluate the sum. From
ϕY and Lemma (6.3), we easily obtain the expected value

E (Y ) = ϕ′Y (1) = λeλ(s−1)∣
s = 1

= λ,

and the variance

var(Y ) = ϕ′′Y (1) + ϕ′Y (1) − (ϕ′Y (1))2 = (λ2 eλ(s−1) + λeλ(s−1) − λ2 e2λ(s−1))∣
s = 1

= λ.

∎
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Lemma 6.7. The probability generating function ϕY satisfies the following properties.

▷ It is continuous as a map s↦ ϕY (s).

▷ It is convex (konveksi): for all s, t ∈ [0,1], we have

ϕY (α t + (1 − α) s) ≤ αϕY (t) + (1 − α)ϕY (s), for all α ∈ [0,1]. (6.10)

▷ It is non-decreasing on [0,1] and satisfies ϕY (s) ∈ [0,1] for all s ∈ [0,1].

▷ It is infinitely many times differentiable on (−1,1), and

P (Y = k) = pk =
ϕ
(k)
Y (0)
k!

, k = 0,1,2, . . . . (6.11)

Convexity means that the straight line between any pair of points on the curve of ϕY is
above or just meets the graph of ϕY . Indeed, varying α ∈ [0,1], we see that the right-hand side
in (6.10) is the straight line between the points (s, ϕY (s)) and (t, ϕY (t)), while the left-hand
side is the graph of ϕY between the points t and s. See Figure 6.1.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 6.1: The linear function s ↦ s (blue) and an example of a convex function s ↦ s2

(orange) on the unit interval [0,1].

Proof. By (6.4) the convergence radius26 of the power series on the right side of (6.3) is always
at least 1, and therefore the series defining ϕY is continuous and can be differentiated infinitely
many times27 term be term at every point in (−1,1). In particular, by differentiating it k times
at zero, we find (6.11).

Next, by investigating the derivatives (6.9), we see that both ϕ′Y (s) and ϕ′′Y (s) are non-
negative for s ∈ [0,1].

▷ Hence, since ϕ′Y (s) ≥ 0 for all s ∈ [0,1], the function s ↦ ϕY (s) is non-decreasing on [0,1].
Because ϕY (1) = 1 and ϕY (0) = p0 ≥ 0, we see that ϕY (s) ∈ [0,1] for all s ∈ [0,1].

▷ It is a good exercise for a mathematically oriented reader to prove using the Mean Value
Theorem (väliarvolause)28 that for any function f ∶ [0,1] → R, it holds that if f ′′(s) ≥ 0 for
all s ∈ [0,1], then f is convex, i.e., (6.10) holds.

26The convergence radius of a power series ∑k pk x
k is the largest number R ≥ 0 such that ∑k ∣pk ∣ ∣x∣

k
< ∞

whenever ∣x∣ < R. This means that the series converges absolutely.
27This is discussed in the course Differentiaali- ja integraalilaskenta 1 (MS-A010X).
28This is also discussed in the course Differentiaali- ja integraalilaskenta 1 (MS-A010X).
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▷ It therefore follows from the property ϕ′′Y (s) ≥ 0 for all s ∈ [0,1] that ϕY is convex.

6.3 Multiplicativity properties of probability generating functions

The key usefulness of probability generating functions is that they behave well for sums of
independent random variables.

Theorem 6.8 (Multiplicativity). Consider independent random integers Y1, Y2, . . . , Yn in
N0. Then, their sum Y = Y1+Y2+⋯+Yn is also a random integer in N0 and its probability
generating function is

ϕY (s) = ϕY1(s) ⋅ ϕY2(s)⋯ϕYn(s). (6.12)

A special case of Theorem 6.8 is when Y1, Y2, . . . , Yn are iid random numbers in N0:

ϕY1+Y2+⋯+Yn(s) = (ϕY1(s))
n, (6.13)

since for iid random numbers, ϕY1(s) = ϕY2(s) = ⋯ = ϕYn(s) by Theorem 6.2.

Proof. The left-hand side of (6.12) is

ϕY (s) = E (sY1+Y2+⋯+Yn) = E (sY1 ⋅ sY2 ⋯ sYn),

and because Y1, Y2, . . . , Yn are independent, it factorizes to

E (sY1 ⋅ sY2 ⋯ sYn) = E (sY1) ⋅E (sY2)⋯E (sYn) = ϕY1(s) ⋅ ϕY2(s)⋯ϕYn(s),

which is the right-hand side of (6.12).

The following result generalizes Theorem 6.8 to the case where the number of summands is
a random variable. (An empty sum ∑0

j=1 Yj is defined as zero in the formula below.)

Theorem 6.9 (Composition). Consider independent random integers N and Y1, Y2, . . . in
N0. If Y1, Y2, . . . are identically distributed (iid), then the probability generating function
of the random sum

Y =
N

∑
j = 1

Yj

is obtained by ϕY (s) = ϕN(ϕY1(s)).

Proof. By conditioning on the possible values ofN and applying independence and identity (6.12)
from Theorem 6.8 we find that

ϕY (s) =
∞
∑
n = 0

P (N = n) ⋅E (sY1+Y2+⋯+Yn ∣ N = n)

=
∞
∑
n = 0

P (N = n) ⋅E (sY1+Y2+⋯+Yn) [N and Y1, Y2, . . . independent]

=
∞
∑
n = 0

P (N = n) ⋅ (ϕY1(s))
n [by (6.13), since Y1, Y2, . . . iid]

= ϕN(ϕY1(s)). [by (6.3)]
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Theorem 6.10 (Wald’s identity). Consider independent random integers N and
Y1, Y2, . . . in N0. Suppose furthermore that Y1, Y2, . . . are identically distributed (iid),
and that E (N) < ∞ and E (Y1) < ∞. Then, we have

E (
N

∑
j = 1

Yj) = E (N) ⋅E (Y1). (6.14)

Proof. The assumptions E (N) < ∞ and E (Y1) < ∞ imply that we may differentiate both sides
of the identity from Theorem 6.9,

ϕY (s) = ϕN(ϕY1(s)),

at s = 1 and use the chain rule to obtain

ϕ′Y (s) = ϕ′N(ϕY1(s)) ⋅ ϕ
′
Y1
(s) s→1Ð→ ϕ′N(ϕY1(1)) ⋅ ϕ

′
Y1
(1) = ϕ′N(1) ⋅ ϕ′Y1

(1)
= E (N) ⋅E (Y1),

using the values ϕY1(1) = 1, and ϕ′N(1) = E (N), and ϕ′Y1
(1) = E (Y1) from Lemma 6.3.

Example 6.11. Otaniemi Eulers take part in the championship of the robot football league
every spring. The probability that Eulers wins a game is p ∈ (0,1), and each match is considered
independent. Alas, Eulers do not make it to the championship finals every year: the number of
years between two finals that Eulers get to play is random and obeys the Poisson distribution
Poi(λ) with mean λ > 0. What is the expected number Y of years between the consecutive wins
that Eulers gain in the finals?

We model the numbers of years between the instances when Eulers are in the championship
final by iid random variables Y1, Y2, . . . following the Poisson distribution

P (Y1 = k) =
⎧⎪⎪⎨⎪⎪⎩

e−λ λk

k! , k ≥ 0,
0, k < 0.

We model the number of attempts needed before a win by a geometric random variable N ,

P (N = k) = (1 − p)k p.

Then, every time Eulers lose the final, another Yj years have to pass before the next chance,
and our count stops when they eventually win. Thus, we have

Y =
N

∑
j = 0

Yj .

By Theorem 6.10, the expected value of Y equals

E (Y ) = E (N) ⋅E (Y1) =
1 − p
p

λ.

∎
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6.4 Moment generating functions

Definition. The moment generating function (momentit generoiva funktio) of a random
integer Y in N0 distributed according P (Y = k) = pk is

MY (s) = E (esY ) =
∞
∑
k = 0

pk e
sk, (6.15)

for those values of s for which the sum on the right side converges.

▷ The moment generating function MY is always defined for s ∈ (−∞,0]: since {pk ∶ k ∈ N0}
forms a probability distribution, we have

∞
∑
k = 0
∣pk∣ ⋅ esk ≤

∞
∑
k = 0

pk = 1, s ∈ (−∞,0].

▷ Note that ϕY (s) =MY (log s), for all s ∈ (0,1)

▷ Note that MY (0) = 1 and lim
s→−∞

MY (s) = 0.

▷ The moment generating function MY can also be defined for real-valued random variables
Y via the formula MY (s) = E (esY ).

Example 6.12.

▷ In Example 6.5, the moment generating function of a geometric random variable Y is

MY (s) = ϕY (es) =
p

1 − (1 − p) es
.

▷ In Example 6.6, the moment generating function of a Poisson random variable Y is

MY (s) = ϕY (es) = eλ(e
s−1).

∎

Theorem 6.13 (Moments). Suppose that the derivatives M (k)
Y (s) exist at s = 0. Then,

we have

E (Y k) = M (k)
Y (0), k = 0,1,2, . . . .

Theorem 6.14 (Multiplicativity). Consider independent random integers Y1, Y2, . . . , Yn
in N0. The moment generating function of Y = Y1 + Y2 +⋯ + Yn is

MY (s) = MY1(s) ⋅MY2(s) ⋯MYn(s).

Proof. We leave the proofs of Theorems 6.13 and 6.14 as an exercise.
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Lemma 6.15. The moment generating function MY satisfies the following properties.

▷ It is continuous as a map s↦MY (s).

▷ It is convex : for all s, t ∈ (−∞,0], we have

MY (α t + (1 − α) s) ≤ αMY (t) + (1 − α)MY (s), for all α ∈ [0,1].

Proof. This can be proven similarly as Lemma 6.7.

6.5 Using generating functions to solve difference equations

In the exercises, you will see how generating functions can be used also to find solutions to linear
difference equations.
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7 Branching processes

7.1 Branching processes as a Markov chain and its transition matrix

For more background of branching processes, see, e.g. [GS97, Chapter 10].

Definition. A branching process (haarautumisprosessi) is a countable-state Markov chain
X = (X0,X1,X2, . . .) on state space N0 = {0,1,2, . . .} which models a population where
each individual in generation t independently produces a random number of children, and
these children form the next generation t + 1.

The model is parametrized by an offspring distribution (lisääntymisjakauma)

p = {p(k) ∶ k ∈ N0} = {p(k) ∶ k = 0,1,2, . . .} (7.1)

which is a probability distribution on N0 = {0,1,2, . . .}, where the entry p(k) equals the
probability that an individual produces k children.

Xt represents the number of individuals in t:th generation and is defined inductively by

Xt+1 =
Xt

∑
j = 1

Yj , (7.2)

where Y1, Y2, . . . are independent and identically distributed (iid) p-distributed random
integers representing the offspring of each individual in the t:th generation.

The study of branching processes became popular after a question published by Francis
Galton in 1873, which was later solved by Thomas Watson a couple of years later. This is
why a branching process is often also called a Galton–Watson process (Galton–Watson prosessi).
Branching processes are applied to several types of spreading phenomena. In epidemic modelling,
the population refers to the infectious individuals, and producing children means transmitting a
disease to others. In social sciences, the population may refer to people advocating an opinion,
and producing children means communicating the opinion to others.
Galton’s question was:

What is the probability that a population eventually becomes extinct?

In other words, what is the hitting probability P (T0 < ∞) of the branching process into state
zero? (Recall (4.4) with A = {0}.) We will answer this question in Theorem 7.6.

▷ If there are X0 = n individuals in the zero:th generation, then the size of generation 1 is

X1 = Y1 + ⋯ + Yn,

where Y1, Y2, . . . are iid p-distributed random integers representing the offspring of each
individual in the initial population. Note in particular that if X0 = 1 (interpreted as tracking
the evolution line of one individual), then X1 = Y1 ∼ p is just p-distributed with (7.1).

▷ If there are no individuals in generation t, then no children are born and hence also the next
generation is empty. State 0 is hence absorbing for the branching process Markov chain.
The interpretation is that when X enters 0, the population becomes extinct. Note that

Xs = 0 Ô⇒ Xt = 0, for all t ≥ s.
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Theorem 7.1 (Transition matrix ). For branching process X = (X0,X1,X2, . . .), the tran-
sition probability from state x ≥ 1 to state y ≥ 0 equals

P (x, y) = P (Y1 +⋯ + Yx = y), (7.3)

and the transition probability from state x = 0 to state y ≥ 0 equals

P (0, y) =
⎧⎪⎪⎨⎪⎪⎩

1, y = 0,

0, otherwise.
(7.4)

Proof. Formula (7.3) follows from the definition of branching process, specifically from (7.2):

Xt+1 =
Xt

∑
k = 1

Yk. (7.5)

To obtain formula (7.4), just note that if Xt = 0, then the above sum is empty, so Xt+1 = 0.

After the offspring distribution p has been given, formulas (7.3)–(7.4) uniquely determine the
entries of a infinite transition matrix P with rows and columns indexed by N0 = {0,1,2, . . .}. The
only problem is that computing numerical values of the entries of P can be difficult from (7.3).
For example, to determine the entry P (3,9) requires computing the complicated sum

P (3,9) =
∞
∑

y1 = 0

∞
∑

y2 = 0

∞
∑

y3 = 0
1|{y1 + y2 + y3 = 9} ⋅ p(y1) ⋅ p(y2) ⋅ p(y3).

Generating functions (Section 6) provide a powerful tool for treating such formulas. Indeed, if
the branching process starts with n individuals, X0 = n, then we see from Theorem 6.8 and (6.13)

ϕX1(s) = ϕY1+Y2+⋯+Yn(s) = (ϕY1(s))
n. (7.6)

Hence, the entry P (3,9) of the transition matrix could by computed by writing the probability
generating function (ϕY1(s))3 defined by (6.3) as a power series, and finding out the term
corresponding to s9:

(ϕY1(s))
3 = (

∞
∑
k = 0

p(k) sk)
3

=
∞
∑

k1 = 0

∞
∑

k2 = 0

∞
∑

k3 = 0
p(k1) ⋅ p(k2) ⋅ p(k3) ⋅ sk1+k2+k3 .

Much more conveniently, recall that by formula (6.5) in Theorem 6.2,

P (X1 = k) =
ϕ
(k)
X1
(0)
k!

, k = 0,1,2, . . . ,

so taking again X0 = 3, the entry P (3,9) can the obtained by differentiating (ϕY1(s))3 nine
times at zero and dividing the outcome by the factorial of 9:

P (Y1 + Y2 + Y3 = 9 ∣ X0 = 3) =
1

9!
( d

ds
)
9
(ϕY1(s))

3 ∣
s=0
.

Example 7.2. If the offspring distribution is the Bernoulli distribution with values {0,3},

P (Y1 = 3) = q and P (Y1 = 0) = 1 − q,

then the probability generating function is ϕY1(s) = q s3+(1−q) (cf. Example 6.4), and we obtain

P (Y1 + Y2 + Y3 = 9 ∣ X0 = 3) =
1

9!
( d

ds
)
9
(ϕY1(s))

3 ∣
s=0
= 1

9!
( d

ds
)
9
(q s3 + (1 − q))3 ∣

s=0
= q3.

Could you find it just from the definition of the model? How about more complicated cases? ∎
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Theorem 7.3 (Probability generating function). For branching process X = (X0,X1, . . .)
starting with one individual (X0 = 1), the probability generating function of the t:th gen-
eration Xt is

ϕXt(s) = ϕXt−1(ϕY1(s)) = (ϕY1 ○ ϕY1 ○ ⋯ ○ ϕY1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t

(s). (7.7)

Proof. Since X0 = 1, we have X1 = Y1, so ϕX1 = ϕY1 . More generally, by Theorem 6.9 the
probability generating function (6.3) of the t:th generation (7.2) is

ϕXt(s) = ϕXt−1(ϕY1(s)).

We prove the second equality in claim (7.7) by mathematical induction. The base case t = 1 is
clear from ϕX1 = ϕY1 . Also, if for some time instant t ≥ 1, the claim is true:

ϕXt(s) = (ϕY1 ○ ϕY1 ○ ⋯ ○ ϕY1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t

(s),

then we know by Theorem 6.9 that

ϕXt+1(s) = ϕXt(ϕY1(s)) [by Theorem 6.9]
= (ϕY1 ○ ϕY1 ○ ⋯ ○ ϕY1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t

(ϕY1(s)) [by induction hypothesis]

= (ϕY1 ○ ϕY1 ○ ⋯ ○ ϕY1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t+1

(s),

so the second equality in claim (7.7) also holds for time instant t + 1. Thus, according to the
induction principle, claim (7.7) holds for all t ≥ 0.

7.2 Expected population size

The following result helps to compute the expected population size as a function of time for
branching process X = (X0,X1,X2, . . .) with offspring distribution p = {p(k) ∶ k = 0,1,2, . . .},
where

m = E (Y1) =
∞
∑
k = 0

k ⋅ p(k)

is the expected number of children produced by an individual distributed as Y1 ∼ p. As a
consequence, we see that the population size tends to zero when m < 1 and grows exponentially
fast to infinity when m > 1. We will discuss the case of m = 1 in Section 7.4 (see Theorem 7.8.)

Theorem 7.4 (Expected generation size). For branching process X = (X0,X1, . . .), the
expected size of generation t is

E (Xt) = E (X0) ⋅mt, t = 0,1,2, . . . , (7.8)

where m = E (Y1). In particular, for a branching process started with X0 = n individuals,
we have

E (Xt) = n ⋅mt, t = 0,1,2, . . . .

We can prove this easily using Wald’s identity (6.14) from Theorem 6.10.
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Proof. We prove claim (7.8) by mathematical induction. It is obviously true for t = 0:

E (X0) = E (X0) ⋅m0 = E (X0).

If the claim is true for some time instant t ≥ 0, then using Theorem 6.10 with N =Xt, we obtain

E (Xt+1) = E (
Xt

∑
j = 1

Yj) = E (Xt) ⋅E (Y1) = E (Xt) ⋅m [by (6.14)]

= E (X0) ⋅mt ⋅m = E (X0) ⋅mt+1, [by ind. hypo. E (Xt) = E (X0) ⋅mt]

and hence, the claim also holds for time instant t+1. Thus, according to the induction principle,
claim (7.8) holds for all t ≥ 0. Lastly, if X0 = n is nonrandom, then of course E (X0) = n.

7.3 Extinction probability

Let us get back to Galton’s question: What is the probability of eventual extinction?

Observe first that the evolution of descendants of any particular individual behaves as a
branching process started with initial stateX0 = 1, and that the branches of the initial individuals
are mutually independent. Therefore, if the initial generation contains n ≥ 1 individuals, then the
probability of eventual extinction is the probability of all individual family lines becoming extinct.
This probability equals (as argued more precisely in the proof of Theorem 7.7)

P (extinction ∣ X0 = n) = (P (extinction ∣ X0 = 1))
n = ηn, (7.9)

denoting η = P (extinction ∣ X0 = 1) = P (T0 < ∞ ∣ X0 = 1), (7.10)

the extinction probability of a branching process starting with one individual, X0 = 1. In
practise, the extinction probability η can be found as a fixed point of the probability generating
function ϕY1 of the offspring distribution, as Theorem 7.6 confirms.

Example 7.5 (Binary tree population model). During its lifetime, each individual produces two
children with probability q and no children otherwise. What is the probability that the family
line of a particular individual eventually becomes extinct?

The offspring distribution is that of a Bernoulli random variable Y ∼ Ber(q) with {0,2},

P (Y = 2) = q and P (Y = 0) = 1 − q.

Assume that X0 = 1 so that we track the family line of a particular individual. Let us consider
the two possible scenarios of the value of X1:

▷ X1 = 0, which happens if the number of children of the initial individual is zero (this has
probability (1 − q)). Then, the family line becomes immediately extinct.

▷ X1 = 2, which happens if the number of children of the initial individual is two (this has
probability q). In this case, we need to investigate the family lines of these two children.
Note that the whole process becomes eventually extinct if both family lines from these two
individuals become eventually extinct. This has probability η2. Thus, we find that

η = (1 − q) + q η2.

We can recognize this as the probability generating function ϕY (s) = q s2+(1−q) of the offspring
distribution (Example 6.4). The fixed points of ϕY are the solutions of

ϕY (s) = s ⇔ qs2 − s + (1 − q) = 0
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which we can solve easily:

s =
1 ±
√
1 − 4q(1 − q)
2q

=
1 ±
√
(1 − 2q)2

2q
=
⎧⎪⎪⎨⎪⎪⎩

1−q
q

1.

Theorem 7.6 below says that the extinction probability is the smaller of these solutions:

η =
⎧⎪⎪⎨⎪⎪⎩

1, q ≤ 1/2,
1−q
q , q > 1/2.

∎

0.2 0.4 0.6 0.8 1.0
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Figure 7.1: The linear function s ↦ s (blue) and examples of convex functions with various
fixed points: s ↦ 1

4 s
2 + 3

4 (orange), s ↦ 1
2 s

2 + 1
2 (green), and s ↦ 3

4 s
2 + 1

4 (red), corresponding
to the probability generating functions in Example 7.5 with q = 1/4, q = 1/2, and q = 3/4,
respectively. Here, the fixed points of the functions are the intersections of them with the linear
(blue) function. We see that on the interval [0,1], the point 1 is always a fixed point, and the
orange and green functions have no other fixed points (since q ≤ 1/2), while the red function has
also the fixed point at 1/3 (since q > 1/2, so 1−q

q is a fixed point). See also Theorem 7.8.

Theorem 7.6 (Extinction probability). For branching process X = (X0,X1, . . .) starting
with one individual (X0 = 1), the extinction probability η is the smallest solution of

ϕY1(s) = s, s ∈ [0,1],

that is, we have ϕY1(η) = η, and if ϕY1(a) = a for some a ∈ [0,1], then η ≤ a.

In fact, the same proof also shows that η is the smallest nonnegative solution of ϕY1(s) = s.
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Proof. Step 1. We first verify that η is indeed a fixed point: ϕY1(η) = η. We can write the
event {T0 < ∞} defining η in (7.10) as

{T0 < ∞} =
∞
⋃
s = 1
{Xs = 0},

since the branching process hits zero overall if and only if it hits zero at some time s ≥ 1. Hence,

η = P (
∞
⋃
s = 1
{Xs = 0}) = lim

t→∞
P (

t

⋃
s = 1
{Xs = 0})

by continuity of probability measures29. Next, we observe that since 0 is an absorbing state,

Xs = 0 Ô⇒ Xt = 0, for all t ≥ s

Ô⇒
t

⋃
s = 1
{Xs = 0} = {Xt = 0},

and we may write

η = lim
t→∞

P (
t

⋃
s = 1
{Xs = 0}) = lim

t→∞
P (Xt = 0) = lim

t→∞
η(t),

where η(t) = P (Xt = 0) is the probability of extinction by time t.
Recall now from Theorem 6.2 that P (Xt = 0) = ϕXt(0), where ϕXt(s) is the probability

generating function from Theorem 7.3 of the t:th generation (7.2),

ϕXt(s) = (ϕY1 ○ ϕY1 ○ ⋯ ○ ϕY1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t

(s) = ϕY1(ϕXt−1(s)).

Hence, we have

η(t) = P (Xt = 0) = ϕXt(0) = ϕY1(η(t − 1)), t ≥ 1. (7.11)

Now, we can take the limit as t→∞ to obtain

η = lim
t→∞

η(t) = lim
t→∞

ϕY1(η(t − 1)) = ϕY1( limt→∞
η(t − 1)) = ϕY1(η),

since s↦ ϕY1(s) is continuous by Lemma 6.7. Hence, ϕY1(η) = η, as desired.
Step 2. We then prove that η is the smallest fixed point of ϕY1 on [0,1]: if ϕY1(a) = a for some
a ∈ [0,1], then η ≤ a. Since ϕY1 ∶ [0,1] → [0,∞) is non-decreasing by Lemma 6.7, we see that

η(1) = P (X1 = 0) = ϕX1(0) = ϕY1(0) ≤ ϕY1(a) = a,

since X1 = Y1. Similarly, using (7.11) we have

η(2) = ϕY1(η(1)) ≤ ϕY1(a) = a,

and we may inductively conclude that η(t) ≤ a for all t ≥ 1. Hence, we obtain

η = lim
t→∞

η(t) ≤ a,

which is what we sought to prove.

29This is discussed in the course Probability theory (MS-E1600), see [Kyt20].
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Theorem 7.7 (Extinction probability with general initial condition). For branching pro-
cess X = (X0,X1, . . .) with initial distribution X0 ∼ µ0, the extinction probability is

P (extinction ∣ X0 ∼ µ0) = ϕX0(η),

where η is the extinction probability when starting with one individual (X0 = 1).

In particular, for a branching process started with X0 = n individuals, the extinction proba-
bility equals ηn, as we claimed in Equation (7.9).

Proof. By the law of total probability, we have

P (extinction) =
∞
∑
n=0

P (extinction ∣ X0 = n) ⋅ P (X0 = n). (7.12)

Each individual in the initial population starts an independent copy of the branching process.
Hence, given X0 = n, extinction of X happens exactly when each of the n independent branching
processes with one initial individual go extinct, each having probability η. The extinction
probability conditioned on X0 = n is thus given by

P (extinction ∣ X0 = n) = ηn.

Plugging this into (7.12) gives

P (extinction) =
∞
∑
n=0

ηn ⋅ P (X0 = n) = E (ηX0) = ϕX0(η),

which is what we sought to prove.

7.4 Sure extinction

Let us finally derive the following fundamental result: a branching process can never reach a
statistical equilibrium with a sustainable nonzero population size. As before, we write

m = E (Y1) =
∞
∑
k = 0

k ⋅ p(k), Y1 ∼ p,

for the expected number of children for an individual. Then, the only case where the population
does not become eventually extinct is the one with expected number of children m > 1, in which
case the population even grows to infinity exponentially fast, according to Theorem 7.4. This is
sometimes called a Malthusian property, after an English scholar Thomas Malthus (1766–1834).

Theorem 7.8 (Growth of population). Assume that p(0) = P (Y1 = 0) > 0. Then, for
branching process X = (X0,X1, . . .), the extinction probability η when starting with one
individual (X0 = 1) satisfies

▷ η = 1, for m ≤ 1, while

▷ η ∈ (0,1), for m > 1.

The case where m = 1 is often called critical. On the one hand, we see from Theorem 7.4
that when m = 1,

E (Xt) = mt = 1, t = 0,1,2, . . . .

On the other hand, Theorem 7.8 shows that the branching process surely becomes extinct also
in the case of m = 1. See also Figure 7.1 which shows some fixed points.

75



Proof sketch of Theorem 7.8. We know from Theorem 7.6 that η is the smallest fixed point of
ϕY1 on [0,1]. Recall the following properties of the probability generating function ϕY1 :

▷ ϕY1(1) = 1 (cf. Lemma 6.3),

▷ the map s↦ ϕY (s) is convex (6.10) on [0,1] (cf. Lemma 6.7),

▷ by (6.7), the expected number of children for an individual equals

m = E (Y1) = ϕ′Y (1−).

Hence, we can make the following observations.

▷ If m ≤ 1, then by sketching a plot of ϕY1 on the interval [0,1] we see that ϕY1 does not have
any fixed points [0,1) — so the smallest fixed point of ϕY1 on [0,1] is η = 1.

▷ If m > 1, then again by plotting ϕY1 on the interval [0,1] we see that ϕY1 has precisely one
fixed point on (0,1). This fixed point is thus the smallest on [0,1], and hence η ∈ (0,1).

Instead of sketching the plots, the proofs can be made rigorous by carefully inspecting Taylor
expansions of ϕY1(s) around zero and around one. We leave this analysis for a mathematically
oriented reader.
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8 Point processes, counting processes, and the Poisson process

We now begin to discuss stochastic processes in continuous time. Point processes in one di-
mension are just random particles in R; and point processes in [0,∞) ⊂ R can be thought of
as collections of random time instants. The associated counting processes, which tell how many
random time instants happened during a given time interval, are examples of stochastic processes
in continuous time. One of the most important examples and a central topic in this course is
the Poisson process, which is Markovian in a certain sense (cf. Theorems 8.7 and 8.13).

For more background and examples on Poisson processes, see, e.g., [Dur12, Chapter 2]. We
refer the mathematically oriented readers to [SW08, Chapter 3] for more details, and [Kal21] for
a general abstract mathematical framework.

8.1 Point processes and counting processes

Point processes are used in many applications: economics, epidemiology, materials science, neu-
roscience, spatial data analysis, telecommunications, as well as in abstract probability theory.
In this course, we will consider the following types of random point collections on intervals I ⊂ R
of the real line R. As usual, the notation (s, t) refers to the open interval {x ∈ (0,1) ∶ s < x < t},
and (s, t] refers to the half-open interval {x ∈ (0,∞) ∶ s < x ≤ t}.

Definition. A point process (satunnainen pistekuvio) on an interval I ⊂ R is a locally
finitea random subset of I.

aA subset X of an interval I is locally finite (lokaalisti äärellinen) if X ∩K is finite whenever K ⊂ I
is closed and bounded (in particular, when K = [a, b] is a closed interval).

In particular, random time instants related to a random phenomenon under study can be
modeled as point processes on (0,∞). Note that the elements in a point process X are usually
not independent. Their distribution is given by their joint probability distribution.

It is usually of interest to find out properties such as the average density of the point process
in R or (0,1]. The counting measure (laskurimitta) of a point process X on I ⊂ R is a random
function which returns the point count of X restricted to subsets of I:

N(B) = ∣X ∩B∣, for all B ⊂ I.

For point processes on (0,∞), the point count on each interval (0, t] provides the most important
object of study in the scope of point processes in this course. We therefore give it a special name.

Definition. The counting process (laskuriprosessi) of point process X on (0,∞) is

N(t) = N((0, t]), t ∈ (0,∞).

The definition implies that the point count of X in interval (s, t] can be expressed in
terms of the increments of the counting process N :

∣X ∩ (s, t]∣ = N((s, t]) = N(t) −N(s), for all 0 ≤ s < t.

The random function t ↦ N(t) is a continuous-time stochastic process with countable state
space N0 = {0,1,2, . . .}. We will study soon an analogue of the Markov property for such
processes (see Section 8.5 and later Section 10). Let us first focus on some important examples.
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Example 8.1 (Uniform point process). Let U1, . . . , Un be independent and uniformly distributed
random numbers on the interval (0,1). Then, X = {U1, . . . , Un} is a point process on I = (0,1),
consisting of n random elements of (0,1). Its counting process can be written as

N(t) = N((0, t]) =
n

∑
j = 1

1|{Uj ≤ t}, t ∈ (0,1).

∎

Example 8.2 (Poisson dominated points). Let Z ∼ Poi(λ) be a random integer which follows
a Poisson distribution with mean λ > 0, so that

P (Z = k) =
⎧⎪⎪⎨⎪⎪⎩

e−λ λk

k! , k ≥ 0,
0, k < 0.

Then, X = {k ∈ N0 ∶ k ≤ Z} is a point process on I = (0,∞). Its counting process can be
written as

N(t) = N((0, t]) = ∣{k ∈ N0 ∶ k ≤min{Z, t}}∣, t ∈ (0,∞).

∎

The following example is very important in the theory of point processes, as we will see later:
according to Theorem 8.6, the point process in Example 8.3 is in fact a Poisson point process,
which is the most important continuous-time stochastic process discussed in this course.

Example 8.3 (Exponential arrivals). Define random numbers T1, T2, . . . by the formula

Tn = τ1 + τ2 + ⋯ + τn, n ≥ 1,

where τ1, τ2, . . . are iid exponentially distributed random numbers, τ1 ∼ Exp(λ), so that

P (τ1 ≤ t) = 1 − e−λ t, t ∈ [0,∞).

The parameter λ is usually called the arrival rate (saapumistahti). The mean (average) of the
exponential random variable τ1 ∼ Exp(λ) is inverse of the rate,

E (τ1) =
1

λ
.

The numbers X = {T1, T2, . . .} form a point process on I = (0,∞), and λ is called the inten-
sity (intensiteetti) of X. Its counting process can be written as

N(t) = N((0, t]) =
∞
∑
j = 1

1|{Tj ≤ t}, t ∈ (0,∞).

This process plays a crucial role in the next Section 8.2. ∎

8.2 Poisson process and exponential waiting times

We now introduce the most important continuous-time stochastic process discussed in this
course: the ubiquitous Poisson process. It is the counting process of a point process on (0,∞)
with two special properties: homogeneity and independence (discussed precisely in Section 8.5).
In fact, by Theorem 8.13 the Poisson process is the only possible process arising in this way.
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Definition. Random function N ∶ (0,∞) → N0 = {0,1,2, . . .} is a (homogeneous) Poisson
process (Poisson-prosessi) with intensity (intensiteetti) λ ∈ [0,∞) if

1. N(t) −N(s) ∼ Poi(λ(t − s)) for all (s, t] ⊂ (0,∞), and

2. N has independent increments (riippumattomat lisäykset), that is,

N(t1) −N(s1), . . . , N(tk) −N(sk)

are independent whenever (s1, t1], . . . , (sk, tk] ⊂ (0,∞) are disjoint.

In particular, we have E (N(1)) = λ and

P (N(t) = k) = e−λ t (λ t)k

k!
, k = 0,1,2, . . . .

Note in particular that the intensity of a Poisson process is the expected number of points
on the unit interval (0,1] in the associated point process (called Poisson point process):

E (N(1)) = λ.

As can be seen in Figure 8.1, the paths of a Poisson process are piecewise constant, and grow
with unit jumps at random time instants T1, T2, . . .. Following the usual convention, we impose
the additional assumption that the paths of a Poisson process are right-continuous. Then, the
n:th jump instant Tn of Poisson process N can be written as

Tn = min{t ≥ 0 ∶ N(t) = n}, n = 1,2, . . . .
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Figure 8.1: A typical sample path of a Poisson process.
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Definition. Let N be a Poisson process with intensity λ. The collection {T1, T2, . . .} of
jump instants forms a point process on (0,∞) with counting process

N(t) =
∞
∑
j = 1

1|{Tj ≤ t}, t ∈ (0,∞).

{T1, T2, . . .} is called a Poisson point process (Poisson pistekuvio) with intensity λ.

▷ The random variables T1, T2, . . . are often viewed as the events of the Poisson process, and
then, the difference N(t) −N(s) tells the number of events during the time interval (s, t].
With probability one, this number is the same for time intervals [s, t] or (s, t), because the
probability of a Poisson process jumping at fixed nonrandom time instant is zero30.

▷ Conversely, the point process in Example 8.3 with exponentially distributed arrivals is in
fact a Poisson point process, see Theorem 8.6.

Theorem 8.4 (Jump times). For Poisson process N with intensity λ ∈ (0,∞),

▷ the first jump instant

T1 = min{t ≥ 0 ∶ N(t) = 1}

is exponentially distributed with rate λ, that is, T1 ∼ Exp(λ), so that

P (T1 ≤ t) = 1 − e−λ t, t ∈ (0,∞),

▷ the n:th jump instant

Tn = min{t ≥ 0 ∶ N(t) = n}

is Gamma distributed, that is, Tn ∼ Gamma(n,λ), so that

P (Tn ≤ t) = ∫
t

0

λn

(n − 1)!
un−1 e−λu du, t ∈ (0,∞). (8.1)

Proof. We leave the proof as an exercise.

Theorem 8.5 (Waiting/arrival times). For Poisson process N with intensity λ ∈ (0,∞),
the distances between jumps are iid and exponentially distributed with rate λ:

Tn − Tn−1 ∼ Exp(λ), for all n = 1,2,3, . . . ,

where we take T0 = 0 by convention.

30This follows from the fact that distribution of Tn is continuous — in fact, Tn follows a Gamma distribution
(Theorem 8.4). The distances Tn−Tn−1 between jump instants follow the exponential distribution (Theorem 8.5).

80



Proof. We leave it as an exercise to check that Tn − Tn−1 ∼ Exp(λ). We will see later in Theo-
rem 11.2 that (conditioned on the event {N0 = 0, NT1 = 1, NT2 = 2, . . . , NTn−1 = n−1} which has
probability one), the arrival times Tn − Tn−1 are independent for different n ∈ N0 (this follows
since N is a continuous-time Markov process, as discussed in more detail in Chapters 10–11).

Crucially, the converse of Theorem 8.5 also holds: the point process where the arrival times
are independent and exponentially distributed (as in Example 8.3) is necessarily a Poisson point
process. This is perhaps the most practical way to construct a Poisson point process.

Theorem 8.6 (Exponential arrivals are counted by Poisson process). Consider the point
process X = {T1, T2, . . .} on I = (0,∞), where

Tn = τ1 + τ2 + ⋯ + τn, n ≥ 1,

and where τ1, τ2, . . . are iid exponentially distributed random numbers with rate λ, so that
τ1 ∼ Exp(λ). Then, the counting process of X,

N(t) =
∞
∑
j = 1

1|{Tj ≤ t}, t ∈ (0,∞), (8.2)

is a Poisson process with intensity λ.

Proof. We already know from Theorem 8.5 that, for any Poisson process N with intensity
λ ∈ (0,∞), for the corresponding Poisson point process {T1, T2, . . .} the differences τn = Tn−Tn−1,
for n = 1,2, . . ., are iid and exponentially distributed, with τ1 ∼ Exp(λ). Therefore, they coincide
stochastically with those in Example 8.3, and hence the counting process (8.2) is N .

8.3 Memoryless property of exponential distribution

An analogue of Markov property in the context of continuous-time processes is provided by the
memoryless property of the times between jumps. We will get back to this in Sections 10–11.

Definition. We say that random variable T on [0,∞) satisfies the memoryless property
(muistittomuusominaisuus) if

P (T > s + t ∣ T > s) = P (T > t), for all s, t ∈ [0,∞). (8.3)

In fact, the memoryless property is a special property that completely characterizes the
exponential distribution (and thus gives a kind of Markovian nature for it):

Theorem 8.7 (Memoryless property of exponential distribution). Random variable T on
[0,∞) is exponentially distributed with some rate parameter λ ∈ [0,∞), i.e., T ∼ Exp(λ),
if and only if T satisfies memoryless property (8.3).

Thus, the times Tn−Tn−1 ∼ Exp(λ) between jumps for a Poisson process are uniquely charac-
terized by the memoryless property. However, note that the jump instants Tn themselves, other
than T1, are not memoryless — the Gamma distribution (8.1) does not enjoy the property (8.3).
Indeed, knowing that Tn > s, it is more likely that Tn > s + t. Hence, we have

P (Tn > s + t ∣ Tn > s) ≥ P (Tn > s + t), s, t ∈ [0,∞).
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Proof of Theorem 8.7. We leave it as an exercise to verify that T ∼ Exp(λ) satisfies (8.3).
Conversely, suppose that random variable T satisfies memoryless property (8.3). Then, the

tail distribution function H(t) = P (T > t) satisfies the multiplicativity

H(t + s) = H(t) ⋅H(s), for all s, t ∈ [0,∞). (8.4)

Because H is nonincreasing, it follows by the theory of Cauchy’s functional equations that H
must have the form

H(t) = e−λt, for some λ ∈ [0,∞).

▷ When λ > 0, this shows that the random variable T is Exp(λ)-distributed.

▷ When λ = 0, it follows that

P (T = ∞) = lim
n→∞

P (T > n) = 1,

which corresponds to an exponential distribution with rate parameter zero.

Example 8.8 (Triathlon race). Consider two competitors Y1, Y2 in a triathlon race, whose
arrival times to the finish line are independent and exponentially distributed:

Y1 ∼ Exp(λ1) and Y2 ∼ Exp(λ2).

▷ What is the probability that Y1 wins the race?

▷ What is the winning time T =min{Y1, Y2}?

Recall that the exponential distribution has density f(t) = λe−λ t. Using this, because Y1, Y2 are
independent, we can compute

P (Y1 < Y2) = ∫
∞

0
(∫

t

0
λ1 e

−λ1 s ds) ⋅ λ2 e−λ2 t dt

= ∫
∞

0
(1 − e−λ1 t) ⋅ λ2 e−λ2 t dt

= λ1
λ1 + λ2

.

Because Y1, Y2 are independent, we can also compute

P (T > t) = P (Y1 > t, Y2 > t) = P (Y1 > t) ⋅ P (Y2 > t) = e−λ1 t ⋅ e−λ2 t = e−(λ1+λ2) t.

This shows that T ∼ Exp(λ1 +λ2). This property similarly holds for more than two exponential
random variables (see Theorem 9.10 in Section 9.4). ∎

8.4 Binomial approximation of Poisson distribution

The next lemma says that Poisson random variables can be approximated by binomial random
variables. Its proof is meant for additional information for students majoring in mathematics,
and can also be skipped at the first reading. (We use it in the proof of Theorem 8.13.)

Lemma 8.9 (Law of small numbers). For each n ∈ N, let Zn be a Bin(n, qn)-distributed
random integer, and assume that nqn Ð→ α ∈ (0,∞) as n → ∞. Then, the following
convergence holds:

lim
n→∞

P (Zn = k) = e−α
αk

k!
, for all k = 0,1,2, . . . .
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Proof. By definition of the Bin(n, qn) distribution, we find that

P (Zn = k) =
n!

k!(n − k)!
(1 − qn)n−kqkn

= n!

nk(n − k)!
1

(1 − qn)k
(nqn)k

k!
(1 − nqn

n
)
n
.

(8.5)

We will analyze the right-hand side of (8.5) as n→∞. The first term satisfies

n!

nk(n − k)!
= 1

nk

k−1
∏
j = 0
(n − j) =

k−1
∏
j = 0
(1 − j/n) n→∞Ð→ 1.

Because qn → 0, also the second term on the right side of (8.5) satisfies

1

(1 − qn)k
n→∞Ð→ 1.

Furthermore, the assumption nqn → α implies that the third term on the right of (8.5) scales as

(nqn)k

k!

n→∞Ð→ αk

k!
.

Hence, the claim follows after verifying that

lim
n→∞
(1 − nqn

n
)
n

= e−α,

which we leave as an exercise for an interested reader to check.

8.5 Homogeneous and independent scattering

A useful notion of independence for point processes is that information about the points of X
within a set A is irrelevant when predicting how the point process behaves outside A. Such
independent scattering is a very restrictive assumption, which only few point processes satisfy.

Definition. Point process X is independently scattered (riippumattomasti sironnut) if
random variablesN(A1), . . .N(Ak) are independent whenever sets A1, . . . ,Ak are disjoint.

Example 8.10. Is the point process X = {U1, . . . , Un} of Example 8.1 independently scattered?
The answer is no, because the number of points in a subinterval of (0,1) depends on the number
of points in its complement. Indeed, by dividing the open unit interval into intervals A1 = (0,1/2]
and A2 = (1/2,1), we see that

P (N(A1) = 0) = P (U1 > 1/2, . . . , Un > 1/2) = (1/2)n,

while the corresponding conditional probability given {N(A2) = n} equals

P (N(A1) = 0 ∣ N(A2) = n) = 1,

because by definition, the equation N(A1) +N(A2) = n surely holds. ∎

Example 8.11. Is the point process of Example 8.2 independently scattered? ∎

Example 8.12. The point process of Example 8.3 is independently scattered. ∎
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The following result characterizes how independent scattering, an intrinsically algebraic prop-
erty, automatically yields a quantitative description of the distribution of point counts of the
point process. The result also underlines the central role of the Poisson distribution as a uni-
versal distribution describing point counts of independently scattered point processes.

Definition. Point process X on (0,∞) is homogeneous (tasakoosteinen) if its counting
process satisfies

N(B + t) ∼ N(B)

for all sets B ⊂ (0,∞) and for all t ∈ [0,∞), where B + t = {x + t ∶ x ∈ B}.

The intensity (intensiteetti) of homogeneous point process X is the expected point count
E (N((0,1])) on the unit interval (0,1].

For a homogeneous and independently scattered point process X on (0,∞), any interval
I ⊂ (0,∞) can have arbitrarily many points and the points in X can have an arbitrarily long
distance. There is essentially only one type of such processes, as the following result verifies.

Theorem 8.13 (Homogeneous independently scattered must be Poisson point process).
The counting process N(t) = N((0, t]) of a homogeneous independently scattered point
process X is a Poisson process with intensity λ = E (N((0,1])).

The proof can be skipped for the first reading.

Proof sketch. Step 1. It follows immediately from the assumption that X is a homogeneous
independently scattered point process that its counting process N has independent increments.

Step 2. We first show that the probability t↦H(t) = P (N(t) = 0) that there are no points
of X in the interval (0, t] satisfies the multiplicativity property (8.4). Indeed, because

N(0, s + t] = 0 ⇐⇒ N(0, s] = 0 and N(s, s + t] = 0,

we see that

H(s + t) = P (N(0, s + t] = 0)
= P (N(0, s] = 0, N(s, s + t] = 0)
= P (N(0, s] = 0) ⋅ P (N(s, s + t] = 0) [by independence]
= P (N(0, s] = 0) ⋅ P (N(0, t] = 0) [by homogeneity]
= H(s) ⋅H(t).

Because H is nonincreasing, it follows by the theory of Cauchy’s functional equations that H
must have the form

H(t) = e−αt, for some α ∈ [0,∞). (8.6)

Step 3. Write qn = 1 −H(t/n). We next prove that

P (N(t) = k) = e−λ t (λ t)k

k!
, k = 0,1,2, . . . .
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The idea is that

P (N(t) = k) ≈ P (Zn = k),

where n ≥ k is a large number and Zn is a Bin(n, qn)-distributed random integer, as in Lemma 8.9.
To see this, we divide the interval (0, t] into equally sized subintervals In,j = ( j−1n t, jn t] of

length t/n, with j = 1, . . . , n. Consider the indicator random variables

θj = 1|{N(In,j) > 0} =
⎧⎪⎪⎨⎪⎪⎩

1, if N(In,j) > 0,
0, otherwise.

Then, Zn = θ1 + ⋯ + θn is the number of subintervals which contains points of X. Due to
independent scattering, θ1, . . . , θn are iid, and they have the Bernoulli distribution

P (θ1 = 1) = qn and P (θ1 = 0) = 1 − qn,

with parameter qn. Hence, by Theorem 6.8 and identity (6.13), the probability generating
function of Zn = θ1 +⋯ + θn is (recalling Example 6.4)

ϕZn(s) = (qn s + (1 − qn))
n =

n

∑
k = 0
(n
k
) qkn (1 − qn)n−k sk,

which implies that Zn ∼ Bin(n, qn) by Theorem 6.2. Note that by (6.5), we have

P (Zn = k) = (
n

k
) qkn (1 − qn)n−k.

Denote by En the event that each subinterval contains at most one point. Now, on the event
En, we have N(t) = Zn, which implies that

P (N(t) = k) = P (Zn = k) + εn, (8.7)

where εn = P (N(t) = k, Ec
n) − P (Zn = k, Ec

n). To conclude, we gather the following facts.

▷ The right-hand side of (8.7) converges as

P (Zn = k)
n→∞Ð→ e−α

αk

k!
. (8.8)

This follows from Lemma 8.9 with the limit

nqn = n (1 − e−αt/n) =
1 − e−αt/n

1/n
n→∞Ð→ α t

(to see this, use Equation (8.6) and l’Hôpital’s rule).

▷ We have εn Ð→ 0 as n→∞ (this is Lemma 8.14).

From these facts, we see that that

P (N(t) = k) = e−λ t (λ t)k

k!
, k = 0,1,2, . . . .

We may thus conclude that N(t) is Poisson distributed with mean α t = λ t.
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The next lemma is a technical tool for proving Theorem 8.13. It is meant for additional
information for students majoring in mathematics, and can also be skipped at the first reading.

Lemma 8.14. Let X be a point process on interval J ⊂ R with counting measure N .
Divide the real axis R into intervals In,j = ( j−1n , jn] of length 1/n, indexed by integers
j ∈ Z. Then, for any interval J ⊂ I such that E (N(J)) < ∞, we have

lim
n→∞

P (N(J ∩ In,j) ≤ 1 for all j ∈ Z) = 1.

Proof. Consider the random number

D = min{∣x − y∣ ∶ x, y ∈X ∩A, x ≠ y},

which is the smallest distance of two points in the point process restricted to A. When D > 1/n,
then every pair of points in X ∩A contains a gap of width 1/n, so that every interval In,j can
contain at most one point of X ∩A. Therefore, on the event {D > 1/n}, we have

Zn = sup
j
N(A ∩ In,j) = sup

j
∣X ∩A ∩ In,j ∣ ≤ 1. (8.9)

The assumption E (N(A)) < ∞ implies that the set X ∩ A is finite with probability one.
Hence, we have D > 0 with probability one, and the above inequality (8.9) shows that

lim
n→∞

1|{Zn ≤ 1} = 1

with probability one. Now by applying Lebesgue’s dominated convergence theorem 31 to justify
interchanging the limit and the expectation below, it follows that

lim
n→∞

P (Zn ≤ 1) = lim
n→∞

E (1|(Zn ≤ 1)) = E ( lim
n→∞

1|(Zn ≤ 1)) = 1,

which is what we sought to prove.

31See [Kyt20, Thm. VII.22].
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9 Variants of Poisson processes

9.1 Superposed Poisson processes

The following theorem confirms the intuitively natural fact that by superposing several mutually
independent Poisson processes we obtain again a Poisson process. This can be handily proven
using generating functions from Section 6.

Example 9.1. Consider independent Poisson distributed random variables Y1, Y2, . . . , Yn with
parameters λ1, λ2, . . . , λn. What is the distribution of the sum

Y =
n

∑
j = 1

Yj ? (9.1)

From Example 6.6, we know that the probability generating functions of the summands are
ϕYj(s) = eλj(s−1), for j = 1,2, . . . , n. Using Theorem 6.8 we easily compute the probability
generating function of the sum (9.1):

ϕY (s) = ϕY1(s) ⋅ ϕY2(s)⋯ϕYn(s) = eλ1(s−1) ⋅ eλ2(s−1)⋯ eλn(s−1) = e(λ1+λ2+⋯+λn)(s−1).

This shows that Y follows the Poisson distribution with intensity λ = ∑n
j=1 λj . ∎

Theorem 9.2 (Superposed Poisson processes). If N1,N2, . . . ,Nn are independent Poisson
processes with intensities λ1, λ2, . . . , λn, then

N(t) =
n

∑
j = 1

Nj(t), t ∈ (0,∞), (9.2)

is a Poisson process with intensity λ = ∑n
j=1 λj.

In the sum above, the index set could also be countably infinite. In that case, the same proof
works, but we need to assume that ∑∞j=1 λj < ∞.

Proof. Let us verify the three conditions in the definition from Section 8.2 for the process (9.2).

▷ First, we prove that N(t) −N(s) ∼ Poi(λ(t − s)) for all (s, t] ⊂ (0,∞). Indeed, recall from
Example 9.1 that the sum of Poisson random variables is also Poisson distributed with
parameter being the sum of the parameters. Hence, we have

N(t) −N(s) =
n

∑
j = 1
(Nj(t) −Nj(s))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∼ Poi(λj(t−s))

∼ Poi((λ1 + λ2 + ⋯ + λn)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= λ

(t − s)).

▷ Second, we prove that N has independent increments, that is,

N(t1) −N(s1), . . . , N(tn) −N(sn)

are independent whenever (s1, t1], . . . , (sn, tn] ⊂ (0,∞) are disjoint. To see this, we use
the following two facts.

∗ Each part Nj(t) in (9.2) is a Poisson process, so its increments

Nj(t1) −Nj(s1), . . . , Nj(tk) −Nj(sk)

are independent.
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∗ Each Nj(t) is independent of the other processes Ni(t) for i ≠ j, so their increments
are mutually independent.

Now, the increments of the process (9.2) have the form

N(ti) −N(si) =
n

∑
j = 1
(Nj(ti) −Nj(si)), i = 1,2, . . . , k,

so from the above two facts, we see that they are independent for all i = 1,2, . . . , k.

This proves that (9.2) is a Poisson process with intensity λ = ∑n
j=1 λj .

9.2 Compound Poisson processes

Poisson process N(t) models the number of homogeneous and independently scattered random
time instants during times (0, t]. If the time instants are generated as a superposition of many
sparse event sequences, then the net counting process can also be quite accurately modeled as a
Poisson process (called compound Poisson process). For example, this is the case for the traffic
flow of cars on a large highway, if the correlation effects due to traffic lights on inbound roads,
the daily rhythm of the society (school start times, workday end times), etc., are not too big.
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Figure 9.1: A sample path of a compound Poisson process.

In many random phenomena the time instants are often associated with other random vari-
ables that also need to be modeled. The following example describes one situation.

Example 9.3 (Traffic flow). The average flow of cars crossing the Helsinki–Espoo border on
Länsiväylä during weekdays equals λ = 40 cars per minute, and the average number of people
per car is m = 1.9 with an estimated standard deviation of σ = 1.2 (variance σ2). We model
the flow of people traveling in cars across the city border as a stochastic process and derive a
formula for the expectation and standard deviation for people crossing the border per hour.

The flow of cars can be modeled using a Poisson process with intensity λ = 40, with time
unit “1 min”. To a car crossing the border at time instant Tj , we attach a random variable Zj

which tells the number of people in the car. It is natural to assume that the random variables
Z1, Z2, . . . are independent of each other and of the time instants T1, T2, . . .. By doing so, the
number of people who have crossed the border during (0, t] can be represented as a random sum

R(t) =
∞
∑
j = 1

Zj ⋅ 1|{Tj ≤ t} =
N(t)
∑
j = 1

Zj , t ∈ (0,∞),

where N is the counting process of the time instants {T1, T2, . . .}, and {Z1, Z2, . . .} are random
jump sizes at these times – see Figure 9.1. In this example, we assume that the times {T1, T2, . . .}
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form a Poisson point process of intensity λ = 40, and we require that the random jump sizes Zj

take values in set S = {1,2,3,4,5}, and have expected value E (Zj) = m and variance var(Zj) =
σ2, where m = 1.9 and σ = 1.2. We will analyze this model further in Example 9.5. ∎

In general, we can add randomness to point process X = {T1, T2, . . .} on (0,∞) by defining
a new point process on (0,∞) × S,

X̃ = {(T1, Z1), (T2, Z2), . . .},

where Z1, Z2, . . . are random variables with values in some state space S. When the random
variables Zj are real-valued, we may view them as a cost (or reward) at time instant Tj . Then,
the net reward up to time t can be written as

R(t) =
∞
∑
j = 1

Zj ⋅ 1|{Tj ≤ t} =
N(t)
∑
j = 1

Zj , t ∈ (0,∞),

where N(t) is the counting process of the time instants {T1, T2, . . .},

N(t) =
∞
∑
j = 1

1|{Tj ≤ t}, t ∈ (0,∞).

Definition. When N is a Poisson process with intensity λ and the costs Z1, Z2, . . . are
iid and also independent of N , then the stochastic process

R(t) =
N(t)
∑
j = 1

Zj , t ∈ (0,∞), (9.3)

is called a compound Poisson process (yhdistetty Poisson-prosessi). The random variables
{Z1, Z2, . . .} are sometimes called weights (painot), or jump sizes, of R.

Theorem 9.4 (Compound Poisson process). A compound Poisson process R has inde-
pendent increments, and the mean and variance at time t ∈ (0,∞) can be computed as

E (R(t)) = λm t,

var(R(t)) = λ (m2 + σ2) t,
(9.4)

where m = E (Z1) and σ2 = var(Z1), and λ ∈ [0,∞) is the intensity of R.

Proof sketch. The independence of increments is intuitively clear, since the weights are indepen-
dent32. The values N(t) the counting process are Poisson distributed with mean λ t, so

E (N(t)) = var(N(t)) = λ t,

(e.g., by Example 6.6). Hence, the first claim in (9.4) follows from Theorem 6.10:

E (R(t)) = E (
N(t)
∑
j = 1

Zj) = E (N(t)) ⋅E (Z1) = λm t.

32Proving this rigorously can be done by conditioning on events of the form {N(sk) =mk, N(tk) =mk + rk}.
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The second claim in (9.4) can be proven similarly: we first differentiate both sides of the identity
for the probability generating functions from Theorem 6.9,

ϕR(t)(s) = ϕN(t)(ϕZ1(s)),

at s = 1, and use the chain rule and the value ϕZ1(1) = 1 to obtain

ϕ′′R(t)(1) = ϕ
′′
N(t)(1) ⋅ (ϕ

′
Z1
(1))2 + ϕ′N(t)(1) ⋅ ϕ

′′
Z1
(1).

Recalling also the formula ϕ′Y (1) = E (Y ) from Lemma 6.3, we see that

ϕ′′R(t)(1) = m2 ⋅ ϕ′′N(t)(1) + λ t ⋅ ϕ
′′
Z1
(1).

By Lemma 6.3, the variance of R(t) is

var(R(t)) = ϕ′′R(t)(1) + ϕ
′
R(t)(1) − (ϕ

′
R(t)(1))

2

= ϕ′′R(t)(1) + E (R(t)) − (E (R(t)))2

= ϕ′′R(t)(1) + λm t − (λm t)2,

the variance of N(t) is

λ t = var(N(t)) = ϕ′′N(t)(1) + ϕ
′
N(t)(1) − (ϕ

′
N(t)(1))

2

= ϕ′′N(t)(1) + E (N(t)) − (E (N(t)))2

= ϕ′′N(t)(1) + λ t − (λ t)
2,

which shows in particular that ϕ′′N(t)(1) = (λ t)
2, and the variance of Z1 is

σ2 = var(Z1) = ϕ′′Z1
(1) + E (Z1) − (E (Z1))2

= ϕ′′Z1
(1) + m − m2,

which shows in particular that ϕ′′Z1
(1) = σ2 −m +m2. Putting these together yields the claimed

var(R(t)) = ϕ′′R(t)(1) + λm t − (λm t)2

= (m2 ⋅ ϕ′′N(t)(1) + λ t ⋅ ϕ
′′
Z1
(1)) + λm t − (λm t)2

= (m2 ⋅ (λ t)2 + λ t ⋅ (σ2 −m +m2)) + λm t − (λm t)2

= λ (m2 + σ2) t.

Example 9.5 (Traffic flow). Let us come back to Example 9.3. By Theorem 9.4, at time instant
t = 60, we have

E (R(t)) = λm t = 40 ⋅ 1.9 ⋅ 60 = 4560

and

var(R(t)) = λ(m2 + σ2) t = 40 ⋅ (1.92 + 1.22) ⋅ 60 = 12120.

Hence, in our model the number of people R(60) crossing the Helsinki–Espoo border has mean
4560 and standard deviation

√
12120 = 110.09. Because the model is homogeneous (statistically

shift invariant), the same conclusion holds for any time interval of 60 minutes. ∎
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9.3 Thinned Poisson processes

In Section 9.1 we found that by superposing independent Poisson processes we obtain a new
Poisson process. In this section, we consider a corresponding reverse operation, splitting a
Poisson process into several independent Poisson processes. This is also a special case of a
compound Poisson process, with costs taking values in {0,1}, which corresponds to omitting
some of the events. This is commonly referred to as thinning.

Definition. A thinned Poisson process (harvennettu Poisson-prosessi) is a compound
Poisson process

N1(t) =
N(t)
∑
j = 1

θj , t ∈ (0,∞), (9.5)

where the weights θ1, θ2, . . . are iid Bernoulli random variables with values in {0,1}, inde-
pendent of the original Poisson process N .

Example 9.6 (Thinned traffic flow). The average flow of cars crossing the Helsinki–Espoo
border on Länsiväylä highway during weekdays equals λ = 40 cars per minute. Of these cars,
p = 30% contain only one person. What is the probability that during a particular minute, at
most 20 cars contain only one person, given that at least 30 cars contain more than one person?

We build a statistical model for the traffic using Poisson processes, taking into account the
number of people in each car. For each time interval [0, t], we denote

▷ the total number of cars by

N(t) =
∞
∑
j = 1

1|{Tj ≤ t},

▷ the number of cars containing only one person by

N1(t) =
∞
∑
j = 1

θj ⋅ 1|{Tj ≤ t} =
N(t)
∑
j = 1

θj , (9.6)

▷ and the number of cars containing more than one person by

N2(t) =
∞
∑
j = 1
(1 − θj) ⋅ 1|{Tj ≤ t} =

N(t)
∑
j = 1
(1 − θj), (9.7)

where θj ∈ {0,1} is the indicator random variable for the event that the j:th car contains
only one person.

If we assume that θ1, θ2, . . . are independent, the counting process N1(t) thus obtained is a
thinned Poisson process, which is obtained by removing 70% of the events of the original Poisson
process N(t) by independent sampling (see Theorem 9.7). Analogously, also N2(t) is a thinned
Poisson process. We will return to this model in Example 9.8. ∎

The following result confirms that independently thinned Poisson processes are Poisson pro-
cesses — and more strikingly, the thinned processes are mutually independent.
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Theorem 9.7 (Thinned Poisson processes). Let N be a Poisson process with intensity
λ, and let θ1, θ2, . . . be a collection of iid Bernoulli random variables with values in {0,1},
independent of N , and satisfying θ1 ∼ Ber(p). Then, the thinnings (9.6, 9.7) are mutually
independent Poisson processes, with intensities pλ and (1 − p)λ, respectively.

Proof. Step 1. We first show that N1 is a Poisson process. The same argument also shows that
N2 is a Poisson process. We will verify the three conditions in the definition from Section 8.2.

▷ First, we prove that N1(t) −N1(s) ∼ Poi(pλ) for all (s, t] ⊂ (0,∞). Recall that

∗ the probability generating function of N(t) is ϕN(t)(s) = eλt(s−1) (Example 6.6),

∗ the probability generating function of θ1 is ϕθ1(s) = p s + (1 − p) (Example 6.4).

Hence, we may apply Theorem 6.9 to conclude that

ϕN1(t)(s) = ϕN(t)(ϕθ1(s)) = exp (λt (p s + (1 − p) − 1)) = exp (λtp (s − 1)),

which implies that N1(t) ∼ Poi(pλt). In precisely the same way, we can verify that its
increments satisfy N1(t) −N1(s) ∼ Poi(pλ(t − s)).

▷ Second, note that because N1 is a compound Poisson process, it follows from Theorem 9.4
that N1 has independent increments. Hence, N1 is a Poisson process with intensity pλ.

Step 2. It remains to verify that N1 and N2 are independent. Note that the event

{N1(s, t] = j, N2(s, t] = k}

occurs precisely when the interval (s, t] contains N(s, t] = j + k events, out of which to N1 we
select j events and to N2 we select k events. Because the selections are done independently, we
see by applying the binomial distribution that

P (N1(t) = j, N2(t) = k) = P (N(t) = j + k) ⋅ (j + k
j
)pj(1 − p)k

= e−λt (λt)
j+k

(j + k)!
(j + k
j
)pj(1 − p)k

= e−λpt (λpt)
j

j!
e−λ(1−p)t

(λ(1 − p)t)k

k!

= P (N1(t) = j) ⋅ P (N2(t) = k).

Hence, we see that the random variables N1(t) and N2(t) are independent for every time t.
This argument can be generalized in a straightforward manner to show that the random vec-
tors (N1(t1), . . . ,N1(tk)) and (N2(t1), . . . ,N2(tk)) are independent for arbitrary distinct times
t1, . . . , tk, which corresponds to the independence of the processes N1 and N2.

Example 9.8 (Thinned traffic flow). For the model of Example 9.6, it follows by Theorem 9.7
that the traffic flows corresponding cars containing one person and containing more people are
mutually independent. Therefore, the probability that during a particular minute, at most 20
cars contain only one person, given that at least 30 cars contain more than one person equals

P (N2(1) ≤ 20 ∣ N1(1) ≥ 30) = P (N2(1) ≤ 20).

Thus, information about cars containing more than one person has no relevance in predicting
how many cars contain only one person. ∎
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The above independence is rather counterintuitive, because by definition, we must have

N1(t) + N2(t) = N(t)

with probability one. The independence property is one of the magical properties of Poisson
processes — which is not valid in general for other counting processes. The result of Theorem 9.7
can be generalized to thinnings with more general random variables compared to coin flips.

Theorem 9.9 (General thinned Poisson processes). Let N be a Poisson process with
intensity λ, and let Z1, Z2, . . . be a collection of iid random variables with values in S,
independent of N . Then, the thinnings

Nx(t) =
N(t)
∑
j = 1

1|{Zj = x}, x ∈ S,

are mutually independent Poisson processes, with intensities λx = λ ⋅ P (Zj = x).

Proof. This is a good exercise for students majoring in mathematics: check out the proof of
Theorem 9.7 and think how to obtain the asserted result.

9.4 Memoryless races

Recall from Example 8.8 that the minimum of two exponentially distributed random variables
is also exponentially distributed:

⎧⎪⎪⎨⎪⎪⎩

Y1 ∼ Exp(λ1),
Y2 ∼ Exp(λ2)

Ô⇒ min{Y1, Y2} ∼ Exp(λ1 + λ2).

We now prove that this property similarly holds for more than two exponential random variables.
Consider a set of competitors labeled by j ∈ I participating in a race. Assume that the final

time of competitor j equals Yj ∼ Exp(λj), and that the times of the competitors are independent.
Then, the winning time of the race equals

Ymin = min
j∈I

Yj

and the label of the winner is

Jmin = argmin
j∈I

Yj .

Being independent random numbers with a continuous distribution, the times Yj are distinct
from each other with probability one, so that the winner of the race is uniquely defined. The
following (slightly counterintuitive) result tells that information about who wins the race tells
nothing about the winning time. This magical property does not hold in general for other
distributions besides the exponential.

Theorem 9.10. If λ = ∑j∈I λj < ∞ (e.g., when index set I is finite), then the winning
time Ymin is Exp(λ)-distributed with rate parameter λ, and Jmin is distributed as

P (Jmin = j) =
λj

λ
, j ∈ I. (9.8)

Moreover, Ymin and Jmin are independent.
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Proof. Step 1. We first determine the distribution of the winning time. Because

P (Ymin > t) = P (Yj > t for all j ∈ I) = ∏
j∈I
e−λj t = e−λt, (9.9)

we may conclude that Ymin ∼ Exp(λ).
Step 2. Note that competitor j wins the race precisely when Yj < Zj =mink≠j Yk, where the

random number Zj is the best time among the rivals of j. By Step 1, we see that Zj ∼ Exp(κj),
where κj = ∑k≠j λk. Because Yj and Zj are independent from each other, we see that

P (Ymin > t, Jmin = j) = P (t < Yj < Zj)

= ∫
∞

0
∫
∞

0
1|{t < tj < s} ⋅ λje−λj tj ⋅ κje−κj s dtj ds

= λj ∫
∞

t
e−λj tj ⋅ (κj ∫

∞

tj
e−κj s ds)dtj

= λj ∫
∞

t
e−λj tj ⋅ e−κj tj dtj

= λj ∫
∞

t
e−λ tj dtj [since λj + κj = λ]

=
λj

λ
e−λ t.

From this and (9.9), we may conclude that

P (Ymin > t, Jmin = j) =
λj

λ
⋅ P (Ymin > t). (9.10)

In particular, by substituting t = 0 into (9.10), we see that (9.8) holds.
Step 3. Lastly, substituting (9.8) into (9.10), we obtain

P (Ymin > t, Jmin = j) = P (Jmin = j) ⋅ P (Ymin > t),

which shows that Ymin and Jmin are independent.
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10 Continuous-time Markov chains

We will now study more general continuous-time stochastic processesX = (Xt)t∈[0,∞) with values
in a countable (finite or countably infinite) state space S.

10.1 Poisson process as a continuous-time Markov chain

Poisson process N = (Nt)t∈[0,∞) is a natural example of a continuous-time Markov chain. Recall
that it has jumps at random time instants T1, T2, . . ., whose differences (arrival times) τ1, τ2, . . .
are exponentially distributed (Theorem 8.5). The jump instants can be written in the form

Tn = τ1 + ⋯ + τn = min{t ≥ 0 ∶ N(t) = n}, n = 1,2, . . . ,

and Poisson process is the counting process (see also Figure 8.1)

Nt = N(t) =
∞
∑
j = 1

1|{Tj ≤ t}, t ∈ (0,∞).

Example 10.1 (Poisson process). Consider Poisson process N = (Nt)t∈[0,∞) with intensity λ.
As the associated Poisson point process {T1, T2, . . .} is homogeneous and independently scattered
(Theorem 8.13), we find that for any event Hs− determined by the values of the Poisson process
up to time [0, s], the future values of the Poisson process only depend on Ns:

P (Ns+t = k ∣ Ns = j, Hs−) = P (Ns+t −Ns = k − j ∣ Ns = j, Hs−)
= P (Ns+t −Ns = k − j ∣ Ns = j)
= P (Ns+t −Ns = k − j)
= P (Nt −N0 = k − j)
= P (Nt = k − j), t ≥ 0.

Because the random variable Nt ∼ Poi(λt), it follows that the time evolution of N = (Nt)t∈[0,∞)
can be encoded into a family of transition matrices

Pt(j, k) = P (Ns+t = k ∣ Ns = j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

e−λt
(λt)k−j

(k − j)!
, k ≥ j,

0, otherwise.
(10.1)

Hence, N = (Nt)t∈[0,∞) is a continuous-time Markov process on the countably infinite state space
N0: it satisfies the continuum analogue (10.2) of the Markov property (as defined below).

The continuous-time process N makes jumps at random time instants Tj in (0,∞), that
are exponentially distributed with mean 1/λ. The locations of the jumps follow an underlying
discrete-time Markov chain, which is a simple birth–death chain with transition diagram

0 1 2 3 4 ⋯

In the setting of continuous-time Markov chains, it is conventional to encode the jump rates
(1/mean) into the transition diagram:

0 1 2 3 4 ⋯

λ λ λ λ λ

∎
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The Poisson process can be thought of as a continuous-time Markov chain following the
above transition diagram and evolving in time as follows. Starting at state N0 = 0, the process

1. spends a random Exp(λ)-distributed time in state 0,

2. thereafter, the process jumps from state 0 to state 1,

3. then, it spends a random Exp(λ)-distributed time in state 1,

4. thereafter, the process jumps from state 1 to state 2,

and so on. In this simple example, the Poisson process N always increases, as can be seen
directly from the transition diagram. We will see more complicated examples shortly.

10.2 Continuous-time Markov chains

Let S be a countable (finite or countably infinite) state space. We consider stochastic processes
X = (Xt)t∈[0,∞) running in continuous time, with values in S. The transition matrix in contin-
uous time is rather a collection of transition matrices for each time instant t ∈ [0,∞): we write
it as P = (Pt)t∈[0,∞), where each Pt ∶ S × S → [0,1] satisfies

∑
y ∈S

Pt(x, y) = 1, for all x ∈ S.

The definition of a continuous-time Markov chain is very similar to the discrete-time case. The
main difference is of mathematical nature: one has to be a bit careful with what is meant by
the history of the process up to a give time s ≥ 0. This leads to the mathematical notion of
measurability — which is beyond the scope of the present course, but will be discussed, for
example, in the course Probability theory (MS-E1600), see [Kyt20].

Definition. An S-valued stochastic process X = (Xt)t∈[0,∞) is a (time-homogeneous)
continuous-time Markov chain (jatkuva-aikainen Markov-ketju) with state space S and
transition matrices P = (Pt)t∈[0,∞) if X is “conditionally independent of the past”, i.e.,

P (Xs+t = y ∣ Xs = x, Hs−) = Pt(x, y), (10.2)

for all states x, y ∈ S, all times t, s ≥ 0, and for all eventsa Hs− = {(Xu)u≤s ∈ A} such that
P (Xs = x, Hs−) > 0.

aHere, A ⊂ {f ∶ [0, t] → S} is any suitable set of functions from time interval [0, s] to state space S.

▷ As in Theorem 1.1, the Markov property (10.2) can be written in the form

P (Xs+t = y ∣ Xs = x) = P (Xt = y ∣ X0 = x) = Pt(x, y), (10.3)

for all times t, s ≥ 0 and for all states x, y ∈ S such that P (Xs = x) > 0.

▷ The Markov property (10.2) can also be extended to concern several future states and times
of the process X: for any suitable set B ⊂ {f ∶ [t,∞) → S} of functions from time interval
[t,∞) to state space S,

P ((Xt)t≥s ∈ B ∣ Xs = x, Hs−) = P ((Xt)t≥s ∈ B ∣ Xs = x)
= P ((Xt)t≥0 ∈ B ∣ X0 = x),

(10.4)

for all states x, y ∈ S, all times s ≥ 0, and for all events Hs− = {(Xu)u≤s ∈ A} such that
P (Xs = x, Hs−) > 0. This property is sometimes referred to as the extended Markov prop-
erty (laajennettu Markov-ominaisuus), see [Kal21, Lemma 11.1].
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Example 10.2 (Satellite). A satellite that has been launched in space has a random operational
time, which is assumed to be exponentially distributed: T ∼ Exp(κ), with mean 1/κ = 10 years.
When the satellite breaks, it will not be repaired. The state of the satellite can be described as
a simple stochastic process

Xt =
⎧⎪⎪⎨⎪⎪⎩

1, if satellite is operational at time t,

0, otherwise.

Given that the event {Xs = 1} occurs at time s, we know that the satellite is still operational
at time s, and nothing has so far happened to the system. Therefore, by applying the memo-
ryless property of exponential distributions from Theorem 8.7, we see that for any event Hs−
determined by the past values (Xu)u≤s of the process, we have

P (Xs+t = 1 ∣ Xs = 1, Hs−) = P (Xs+t = 1 ∣ Xs = 1) [by (10.2)]
= P (T > s + t ∣ T > s)
= P (T > t) = e−κt.

Thus, by the law of total probability, the probability of the complementary event equals

P (Xs+t = 0 ∣ Xs = 1, Hs−) = 1 − e−κt.

Because a broken satellite remains broken forever, we see that

P (Xs+t = 0 ∣ Xs = 0, Hs−) = 1 and P (Xs+t = 1 ∣ Xs = 0, Hs−) = 0.

In conclusion, we see that X = (Xt)t∈[0,∞) is a continuous-time Markov chain on state space
{0,1}, and its time-t transition matrix is

Pt = [
Pt(0,0) Pt(0,1)
Pt(1,0) Pt(1,1)

] = [ 1 0
1 − e−κt e−κt

] , t ≥ 0.

Its underlying discrete-time Markov chain has transition diagram (including the jump rate κ)

0 1
κ

∎

In Example 10.2, we were able to compute the transition matrices Pt. However, more often
than not, computing transition matrices directly from a description of a continuous time Markov
chain is difficult — even if the Markov chain is relatively simple as in the following example.

Example 10.3 (Taxis near Christmastime). During December, the town Pussinperä has three
taxis operating around town. Each taxi ride (including the return time to the taxi stand) lasts
on average m = 20 minutes, and customers arrive at the taxi stand with rate λ = 2 customers
per hour. If upon a customers’ arrival all taxis are busy, then the customer will go elsewhere.
What is the probability that all taxis are busy when a customer arrives?

We model the taxis by a continuous-time Markov chain X = (Xt)t∈[0,∞), where Xt is the
number of busy taxis at time t. The state space is {0,1,2,3}, and the underlying discrete-time
model follows transition diagram

0 1 2 3
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The probability that all taxis are busy when a customer arrives is P (Xt = 3). Let us make some
further assumptions that will enable us to mathematically analyze this model.

▷ Assume that the arrivals of the customers occur independently and exponentially with rate
λ = 2 customers per hour, as in Example 8.3. In other words, we assume that the iid waiting
times τ1, τ2, . . . between customers’ arrivals follow the distribution τ1 ∼ Exp(λ).

▷ Assume that the duration σ1, σ2, . . . of each taxi ride is also exponentially distributed and in-
dependent of the durations of the other taxi rides, as well as of the arrivals of the customers:
σ1 ∼ Exp(κ). Since each taxi ride lasts on average m = 20 minutes, we see that

E [σ1] =
1

κ
= 20minutes = 1

3
hours,

so that the rate is κ = 3 per hour.

The behavior of this continuous-time Markov chain over time can be characterized as follows.
Starting at state x ∈ {0,1,2,3}, the Markov chain X = (Xt)t∈[0,∞)

▷ spends a random exponentially distributed time in state x,

▷ thereafter, it jumps from state x to some state y with some jump probability,

▷ then, it spends a random exponentially distributed time in state y,

▷ thereafter, it jumps from state y to some state z with some jump probability,

and so on. To characterize the model, we thus have to find the exponential jump rates and the
transition probabilities. We begin by deducing the rates of the exponential waiting times.

▷ Because customers arrive according to Exp(λ)-distributed waiting times, the jump rates for
the Markov chain from state x ∈ {0,1,2} to state x + 1 ∈ {1,2,3} are all equal to λ.

▷ If at time instant s, one taxi is busy (Xs = 1), then in order for all of the taxis to be available
again, we have to wait for time duration σ1 ∼ Exp(κ). Thus, the jump rate for the Markov
chain from state 1 to state 0 is κ.

▷ If at time instant s, two of the taxis are busy (Xs = 2), then in order for one more taxi to be
available again, we have to wait for time duration min{σ1, σ2}, which is the time when one of
the two taxis becomes available. Now, recall from Example 8.8 that min{σ1, σ2} ∼ Exp(2κ).
Thus, the jump rate for the Markov chain from state 2 to state 1 is 2κ.

▷ Analogously, if at time instant s, all taxis are busy (Xs = 3), then in order for one more
taxi to be available again, we have to wait for time duration min{σ1, σ2, σ3}. Similarly as
in Example 8.8 and Theorem 9.10, one can prove that min{σ1, σ2, σ3} ∼ Exp(3κ), so that
the jump rate for the Markov chain from state 3 to state 2 is 3κ.

Hence, including the jump rates, our model follows transition diagram

0 1 2 3

λ λ λ

κ 2κ 3κ
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To find the probability P (Xt = 3) that all taxis are busy when a customer arrives, we will
have to analyze the transition matrices Pt of the continuous-time Markov chain X = (Xt)t∈[0,∞).
But here, we run into an issue: since the Markov chain is in continuous time, in any time interval
t ∈ [0, T ] the Markov chain can make arbitrarily many jumps. Hence, to compute the transition
probability Pt(x, y) we should sum over all possible paths between x and y, which there are
infinitely many of. This is computationally unfeasible. However, not all hope is lost! Indeed,
in Theorem 11.7 we will show a systematic way to compute Pt. Furthermore, the long-term
behaviour of the Markov chain can be easily analysed using transition diagrams. We will come
back to this in Examples 10.9 and 10.11. ∎

10.3 Transition matrices and semigroup property

Recall that for discrete-time Markov chains, the time evolution of the process is encoded in
powers of the transition matrix (Theorem 5.3). For continuous-time Markov chains, one would
expect a similar property, but because non-integer powers of the transition matrices do not make
sense, one has to instead use the time-dependent matrices Pt ∶ S × S → [0,1].

Theorem 10.4 (Time-dependent distribution). The distribution

µt(x) = P (Xt = x), x ∈ S,

of any continuous-time Markov chain X = (Xt)t∈[0,∞) at an arbitrary time instant t ≥ 0
can be computed from the initial distribution µ0 using the formula

µt = µ0 ⋅ Pt, (10.5)

where Pt is the time-t transition matrix of the Markov chain.

Proof. By conditioning on the possible values of the initial state X0, we find that

P (Xt = y) = ∑
x ∈S

P (Xt = y ∣ X0 = x) ⋅ P (X0 = x)

= ∑
x ∈S

P (X0 = x) ⋅ P (Xt = y ∣ X0 = x) = ∑
x ∈S

µ0(x) ⋅ Pt(x, y),

which is the asserted equation in matrix form.

The notion of associativity of the matrix powers is provided by the so-called semigroup
property : if the Markov chain first evolves for s amount of time and then t amount of time, the
total evolution should be stochastically the same as for s + t amount of time. In mathematical
terms, this means that the collection (Pt)t≥0 forms a transition semigroup (siirtymäpuoliryhmä).

Theorem 10.5 (Transition semigroup). The transition matrices of a continuous-time
Markov chain form a transition semigroup P = (Pt)t∈[0,∞), that is,

Ps ⋅ Pt = Ps+t, for all s, t ≥ 0. (10.6)

Equation (10.6) is also called the Chapman-Kolmogorov equation (Chapman-Kolmogorov-yhtälöt).
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Proof. By summing over all possible states Xs = y and using the Markov property, we compute

Ps+t(x, z) = P (Xs+t = z ∣ X0 = x)

= ∑
y ∈S

P (Xs+t = z, Xs = y ∣ X0 = x)

= ∑
y ∈S

P (Xs+t = z ∣ Xs = y, X0 = x) ⋅ P (Xs = y ∣ X0 = x)

= ∑
y ∈S

Pt(y, z) ⋅ Ps(x, y) [by (10.2)]

= ∑
y ∈S

Ps(x, y) ⋅ Pt(y, z),

which is the asserted equation in matrix form.

10.4 Generator matrix

From the semigroup property, one could heuristically anticipate that Pt could be determined
from small time instants as

Pt = Pn⋅ t
n
= P t

n
+⋯+ t

n
= Pn

t/n.

However, taking the limit n → ∞ of Pt/n would only give the identity matrix, which gives no
information about the behavior of the Markov chain. The issue is that, contrast to discrete-time
Markov chains, there is no “next time step” in continuous time. Instead, we would like to retain
information about the transition probabilities only in “infinitesimal future”, or in “infinitesimal
neighbourhood” of time t = 0. Derivatives capture only this kind of infinitesimal information,
which motivates the following definition.

Definition. For continuous-time Markov chain X = (Xt)t∈[0,∞) with transition matrices
P = (Pt)t∈[0,∞), the generator matrix (generaattorimatriisi), if exists, is

Q = lim
t→0

1

t
(Pt − P0) =

d

dt
Pt∣

t=0
. (10.7)

▷ We will see in Theorem 11.4 in Section 11 that the limit (10.7) exists when the jump rates
of the Markov chain are all uniformly bounded — for instance, when state space S is finite.

▷ Equation (10.7) gives for the matrix entries

Q(x, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

lim
t→0

1
tPt(x, y), x ≠ y

lim
t→0

1
t (Pt(x, y) − 1), x = y,

= d

dt
Pt(x, y) ∣

t=0
.

For x ≠ y, this describes the jump rate of the Markov chain from state x to state y.

To demonstrate some general features of generator matrices, let us return to Example 10.2.

Example 10.6 (Satellite). Consider the transition matrices of Example 10.2

Pt = [
1 0

1 − e−κt e−κt
] , t ≥ 0
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on state space {0,1}. As t→ 0, we see that

Pt
t→0Ð→ [1 0

0 1
] ,

while as t→∞, we see that

Pt
t→∞Ð→ [1 0

1 0
] .

In particular, we would expect that the Markov chain has invariant (and limiting) distribution

π = [π(0), π(1)] = [1, 0].

(This means that the satellite is eventually broken.)
We can compute the generator matrix using l’Hôpital’s rule:

Q = 1

t
(Pt − P0)

t→0Ð→ lim
t→0
[

0 0
1−e−κt

t
e−κt−1

t

] = [0 0
κ −κ]

The entry Q(1,0) = κ is the jump rate of the Markov chain from state 1 to state 0, and the entry
Q(0,1) = 0 is the jump rate of the Markov chain from state 0 to state 1. The diagonal entries
Q(0,0) = 0 and Q(1,1) = −κ do not have such an obvious interpretation.

▷ Recall that the jump rate κ appears also in the transition diagram

0 1
κ

▷ We can also observe that π ⋅Q = 0, which is actually a general fact (see Theorem 10.10).

∎

Let us next observe that the generator matrix Q governs how the transition matrices Pt

change over time via so-called Kolmogorov’s backward differential equation.

Corollary 10.7 (Kolmogorov’s backward equation). For continuous-time Markov chain
X = (Xt)t∈[0,∞) with generator matrix Q, the transition semigroup P = (Pt)t∈[0,∞) satisfies
Kolmogorov’s backward differential equation

d

dt
Pt = Q ⋅ Pt, t ∈ [0,∞)

P0 = I.
(10.8)

For matrix entries, Equation (10.8) gives the initial value problem

( d

dt
Pt)(x, y) = (Q ⋅ Pt)(x, y), t ∈ [0,∞),

P0(x, y) = 1|{x = y},

for all states x, y ∈ S. This gives means for solving Pt if the generator matrix Q is known.
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Proof. By definition (10.7) and the semigroup property (10.6) from Theorem 10.5, we obtain

d

dt
Pt = lim

s→0

Pt+s − Pt

s
= lim

s→0
(Ps − P0

s
) ⋅ Pt = Q ⋅ Pt, t ∈ [0,∞),

(where the matrix Pt can be taken outside of the limit since its row-sums equal one).

The matrix initial value problem (10.8) is analogous to that for the exponential function:

f(t) = eat =
∞
∑
n=0

(at)n

n!

satisfies the ordinary differential equation

f ′(t) = af(t), t ∈ [0,∞),
f(0) = 1.

In fact, we will show in Theorem 11.7 in Section 11 that33 matrix exponentials etQ of the
generator matrix Q give rise to the transition matrices

Pt = etQ, t ∈ [0,∞),

In light of Corollary 10.7, this does not come as a surprise.

Lemma 10.8. Generator matrix Q of a continuous-time Markov chain has

▷ zero row-sums:

∑
y ∈S

Q(x, y) = 0, for all x ∈ S, (10.9)

▷ nonnegative off-diagonal entries:

Q(x, y) ≥ 0, for all x, y ∈ S such that x ≠ y,

▷ and nonpositive diagonal entries, given by

Q(x,x) = − ∑
y≠x

Q(x, y), for all x ∈ S. (10.10)

Proof. It follows from the definition

Q(x, y) = lim
t→0

Pt(x, y) − I(x, y)
t

, x, y ∈ S, (10.11)

that the row-sums of Q must be zero, because Pt and I have unit row-sums. The above for-
mula (10.11) also implies that the off-diagonal entries of Q satisfy

Q(x, y) = lim
t→0

Pt(x, y)
t

≥ 0, x ≠ y.

Because the row-sums of Q are zero, we see that its diagonal entries must satisfy (10.10).

33When the jump rates of the Markov chain are all uniformly bounded.
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Example 10.9 (Taxis near Christmastime). Let us come back to Example 10.3. While it is not
very practical to try to compute the transition matrices for this model directly, one can analyze
its generator matrix. From the jump rates in the transition diagram

0 1 2 3

λ λ λ

κ 2κ 3κ

one can read the generator matrix

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−λ λ 0 0
κ −λ − κ λ 0
0 2κ −λ − 2κ λ
0 0 3κ −3κ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (10.12)

Its off-diagonal entries Q(x, y) with x ≠ y are just the labels (jump rates) of the transition
diagram, and its diagonal entries Q(x,x) are chosen so that the row-sums (10.9) are zero. ∎

10.5 Invariant distributions

Invariant distributions for a continuous-time Markov chain are defined similarly as in the discrete-
time case. The main result of practical importance in this section is Theorem 10.10, which gives
balance equations from which one can compute the invariant distribution.

Definition. π = {π(x) ∶ x ∈ S} is an invariant distribution (tasapainojakauma) of tran-
sition matrices P = (Pt)t∈[0,∞) and the corresponding Markov chain X = (Xt)t∈[0,∞) if it
satisfies the balance equations π ⋅ Pt = π for all times t ≥ 0, that is,

∑
x ∈S

π(x) ⋅ Pt(x, y) = π(y), for all y ∈ S and t ∈ [0,∞),

and the law of total probability

∑
x ∈S

π(x) = 1.

Theorem 10.10 (Invariant distribution). The following are equivalent for a continuous-
time finite-state Markov chain and for any probability distribution π:

1. π is an invariant distribution of the Markov chain.

2. π ⋅Q = 0, where Q is the generator matrix of the Markov chain.

Because the row-sums of Q are zero, equation π ⋅Q = 0 can be written in the form

∑
x≠y

π(x) ⋅Q(x, y) = π(y) ⋅ ∑
z≠y

Q(y, z). (10.13)

Thanks to the equivalence in Theorem 10.10, equations π ⋅ Q = 0 are also termed balance
equations (tasapainoyhtälöt) for generator matrix Q and the corresponding Markov chain X.

▷ In (10.13), the left side describes the long-term average rate of jumps into state y.
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▷ The right side of (10.13) describes the corresponding rate of out from state y.

Theorem 10.10 can be also generalized to countably infinite state spaces, provided that the
matrix entries of Q are all uniformly bounded (see Section 11).

Proof of Theorem 10.10. We first show that any invariant distribution π of the Markov chain
satisfies the equation π ⋅Q = 0. To this end, by differentiating the formula

(π ⋅ Pt)(y) = ∑
x ∈S

π(x) ⋅ Pt(x, y)

term by term with respect to t (which is possible since we assumed that S is finite), we see by
Kolmogorov’s backward differential equation (10.8) from Corollary 10.7 that

d

dt
(πPt) = π ⋅

d

dt
Pt = π ⋅ (Q ⋅ Pt) = (π ⋅Q) ⋅ Pt. (10.14)

If π is invariant, this implies that 0 = (π ⋅Q) ⋅ Pt. By substituting t = 0, we see that indeed,

0 = π ⋅Q ⋅ P0 = π ⋅Q ⋅ I = π ⋅Q.

Conversely, suppose that π ⋅Q = 0. Then, formula (10.14) shows that d
dt(π ⋅ Pt) = 0, so the

mapping t↦ π ⋅ Pt is constant over time. Therefore, we see that

π ⋅ Pt = π ⋅ P0 = π, for all t ∈ [0,∞),

that is, π is invariant for Pt.

Example 10.11 (Taxis near Christmastime). Let us again come back to Example 10.3. While
it is not very practical to try to compute the transition matrices for this model directly, one can
analyze its generator matrix (10.12)

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−λ λ 0 0
κ −λ − κ λ 0
0 2κ −λ − 2κ λ
0 0 3κ −3κ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
By Theorem 10.10, the invariant distribution π can be handily computed using the generator
matrix Q from the balance equations

π ⋅Q = 0.

Solving these equations for the Markov chain in this example yields

π(1) = π(0) ⋅ λ
κ
, π(2) = π(1) ⋅ λ

2κ
, π(3) = π(2) ⋅ λ

3κ
,

and requiring that π is a probability distribution, we have

π(0) + π(1) + π(2) + π(3) = 1,

from which we can solve for

π(0) = 1

1 + λ
κ +

1
2
(λ
κ
)2 + 1

6
(λ
κ
)3
.

Here, λ/κ is the ratio of the arrival rate λ and the service rate κ. Plugging in λ = 2 and κ = 3,
we find that

P (Xt = 3 ∣ X0 ∼ π) = π(3) = 0.025.

This is the probability at the statistical equilibrium that all taxis are busy when a customer
arrives, which we were after in Example 10.3. ∎
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10.6 Irreducibility, reversibility, and convergence theorems

Irreducibility for continuous-time Markov chains is defined in the same way34 as in discrete time.
Note that the transition diagram of a continuous-time Markov chain is a directed graph with
nodes being the states, and links being the pairs (x, y) for which Q(x, y) > 0. Thus, a generator
matrix Q and the corresponding Markov chain is irreducible if its transition diagram is strongly
connected in the sense that for any distinct nodes x and y, there exists a path from x to y in
the transition diagram.

Theorem 10.12 (Uniqueness of invariant distribution). Any irreducible continuous-time
Markov chain has at most one invariant distribution.

If the invariant distribution π exists, then it also equals the unique limiting distribution,

lim
t→∞

Pt(x, y) = π(y), for all x ∈ S. (10.15)

▷ The balance equations (10.13) provide a practical way to find the invariant distribution, if
it exists. (Computing the limit (10.15) is usually not practical if the state space is large.)

▷ Any irreducible continuous-time Markov chain on a finite state space has a unique invariant
distribution. This is not always true for infinite state spaces.

Proof. This is an analogue of Theorem 5.6. See [Dur12, Theorem 4.4] for a detailed proof.

Reversibility of a continuous-time Markov chain is defined similarly as in the discrete-time
case: a generator matrix Q and the corresponding Markov chain X is called reversible with
respect to a probability distribution π (π-reversible) if the detailed balance equations hold:

π(x) ⋅Q(x, y) = π(y) ⋅Q(y, x), for all x, y ∈ S such that x ≠ y. (10.16)

Note that reversibility also includes the condition (10.17) that π is a probability distribution.

Theorem 10.13 (Existence and uniqueness of invariant distribution from reversibility).
Every irreducible and reversible Markov chain on a countable state space admits a unique
invariant distribution π, satisfying the detailed balance equations (10.16):

π(x) ⋅Q(x, y) = π(y) ⋅Q(y, x), for all x, y ∈ S such that x ≠ y,

and the normalization

∑
x ∈S

π(x) = 1. (10.17)

Moreover, π also equals the unique limiting distribution,

lim
t→∞

Pt(x, y) = π(y), for all x ∈ S.

Proof. This is an analogue of Theorem 5.7. See [Dur12, Chapter 4] for a detailed proof.
34For continuous-time Markov chains, we never need to worry about periodicity issues, because all continuous-

time chains are automatically aperiodic.
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Theorem 10.14 (Ergodic theorem). For any irreducible continuous-time Markov chain
X = (Xt)t∈[0,∞) with invariant distribution π, we have

1

t
∫

t

0
ϕ(Xs)ds Ð→ ∑

y ∈S
π(y) ⋅ ϕ(y), as t→∞,

for any function ϕ ∶ S → R with probability one, regardless of the initial state of the
Markov chain.

Proof. This is an analogue of Theorem 3.1. Its proof will be skipped in this course.

106



11 Analysis of continuous-time Markov chains

11.1 Jump rates and jump probabilities

Consider continuous-time Markov chain X = (Xt)t∈[0,∞) on countable state space S. It is of
great interest to understand the time instant when the Markov chain first exits its initial state
(i.e., when it jumps to a different state), which is an extended random number in [0,∞].

Indeed, we will see that the behavior of any Markov chain is completely determined by
its random jump instants together with its jump probabilities that tell the distribution of the
possible positions of X after its jumps. It turns out that the Markov property is very restrictive:

▷ the jump instants must be memoryless (thus exponentially distributed)
(see Theorems 11.1 & 11.2),

▷ while the jump probabilities form a transition matrix called jump probability matrix P∗
(see Section 11.2).

Definition. For continuous-time Markov chain X = (Xt)t∈[0,∞) started at X0 = x, the
first jump instant (ensimmäinen hyppyhetki) of X is

τ(x) = min{t ≥ 0 ∶ Xt ≠X0 = x}, (11.1)

with the notational convention that τ(x) = ∞ if X never leaves its initial state.

Definition. The total jump rate (hyppyvauhti) of X away from state x ∈ S is

λ(x) = 1

E (τ(x))
, (11.2)

with the notational convention that λ(x) = 0 when the denominator is infinite.

We say that jump rates {λ(x) ∶ x ∈ S} are uniformly bounded (tasaisesti rajoitettu) if there
exists a constant Λ ∈ (0,∞) such that

λ(x) < Λ, for all x ∈ S. (11.3)

In this course, we will always assume that the jump rates are uniformly bounded. This is the
case, for example, when state space S is finite (which holds for most applications in our course).

The following result confirms a fact already observed in the examples: any continuous-time
Markov chain spends an exponentially distributed random time35 in every state that it visits.

Theorem 11.1 (First jump instant). The first jump instant of continuous-time Markov
chain X = (Xt)t∈[0,∞) started at X0 = x is exponentially distributed with rate λ(x):

τ(x) ∼ Exp(λ(x)).

35Here, we interpret an exponential distribution Exp(0) with rate zero as the distribution of a random variable
which is infinite with probability one. This corresponds to staying in an absorbing state.
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Proof. By applying the extended Markov property (10.4), we can verify that

P (τ(x) > s + t ∣ τ(x) > s) = P (Xu = x for all u ∈ [s, s + t] ∣ Xr = x for all r ∈ [0, s]) [by (11.1)]
= P (Xu = x for all u ∈ [s, s + t] ∣ Xs = x) [by (10.4)]
= P (Xu = x for all u ∈ [0, t] ∣ X0 = x) [by (10.4)]
= P (τ(x) > t). [by (11.1)]

This means that the distribution of τ(x) is memoryless (cf. Equation (8.3)), so it follows from
Theorem 8.7 that τ(x) ∼ Exp(λ(x)).

▷ The jump instants (hyppyhetket) of Markov chain X can be defined recursively as T0 = 0,

T1 = min{t ≥ 0 ∶ Xt ≠X0},
Tn = min{t ≥ Tn−1 ∶ Xt ≠XTn−1}, n = 2,3, . . . .

▷ Then, the arrival times (saapumisajat), or waiting times (odotusajat) of the jumps are

τn = Tn − Tn−1, n = 1,2,3, . . . .

(In the literature, they are also called interpoint distances of the point process {T1, T2, . . .}.)

Theorem 11.2 (Waiting/arrival times). For continuous Markov chain X = (Xt)t∈[0,∞),
conditioned on the event {X0 = x0, XT1 = x1, XT2 = x2, . . . , XTn−1 = xn−1}, arrival times
τ1, τ2, . . . , τn are independent and exponentially distributed, with rates τk ∼ Exp(λ(xk−1)).

Moreover, conditioned on the event {XTn−1 = x}, we have τn ∼ Exp(λ(x)).

Proof. This very intuitive fact can be proven using the Markov property, but applied to random
time instant Tn−1. The mathematically precise proof is a bit involved — see [Kal21, Theorem 13.1
and Lemma 13.2] (see also [Kal21, Theorem 13.6] for Theorem 8.5 about Poisson process).

To fully describe the behavior of a continuous-time Markov chain, we need to know how
it jumps to the next states. The Markov property guarantees that each new state is selected
independently of the past trajectory, only depending on the present state.

Theorem 11.3 (Jumps are independent of arrival times). Fix a state x ∈ S. Then,
conditioned on the event {XTn−1 = x}, the random variable XTn is independent of τn, and
its distribution only depends on state x.

Proof. Let us prove the claim in the case n = 1, where we have T1 = τ1. Fix y ≠ x. Then,

P (Xτ1 = y ∣ τ1 ≥ t, X0 = x) = P (Xσt = y ∣ Xs = x for all s ∈ [0, t]), t ∈ [0,∞),

where σt = min{u ≥ t ∶ Xu ≠ Xt}. By the extended Markov property (10.4), Xσt only depends
on Xt and we obtain

P (Xτ1 = y ∣ τ1 ≥ t, X0 = x) = P (Xσt = y ∣ Xt = x) = P (Xσ0 = y ∣ X0 = x) [by (10.4)]
= P (Xτ1 = y ∣ X0 = x), [since σ0 = τ1]

As this holds for every y ≠ x and t ≥ 0, we may conclude that Xτ1 and τ1 are independent. The
general case can be proved using the “strong36 Markov property” [Kal21, Theorem 13.1].

36One can apply the Markov property to suitable natural random time instants (called stopping, or optional
times). This is called strong Markov property, see [Kal21, Theorem 13.1].
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11.2 Embedded discrete-time Markov chain

By Theorems 11.2 and 11.3, the behavior of any continuous-time Markov chain over time can
be characterized as follows. Starting at state x ∈ S, the Markov chain X = (Xt)t∈[0,∞)

▷ spends a random exponentially distributed time τ1(x) ∼ Exp(λ(x)) in state x,

▷ thereafter, it jumps from state x to some state y with some jump probability P∗(x, y),

▷ then, it spends a random exponentially distributed time τ2(y) ∼ Exp(λ(y)) in state y,

▷ thereafter, it jumps from state y to some state z with some jump probability P∗(y, z),

▷ and so on.

By the Markov property (10.3), the new state is selected independently of the past trajectory
of the Markov chain. The Markov chain evolves as above as long as it visits states with a nonzero
jump rate. If the Markov chain hits a state with jump rate zero, it remains stuck there (this
is an absorbing state). The discrete-time Markov chain with transition probabilities P∗(x, y) is
called the embedded Markov chain (upotettu Markov-ketju).

Definition. The jump probability matrix (hyppytodennäköisyysmatriisi) of continuous-
time Markov chain X = (Xt)t∈[0,∞) is the (possibly infinite) matrix P∗ with rows and
columns indexed by states x, y ∈ S and entries given by

P∗(x, y) = P (Xτ(x) = y ∣ X0 = x).

It is a transition matrix on S (related to the underlying discrete-time Markov chain).

▷ Note that the diagonal entries P∗(x,x) = 0 with λ(x) > 0 are zero, because the Markov
chain changes its state on each jump instant.

▷ For states with jump rate λ(x) = 0, it is usual to define the jump rates as P∗(x, y) = 1|{x = y},
although these entries have no effect on the behavior of the Markov chain. Note that λ(x) = 0
means that the Markov chain will never jump away from state x, so P∗(x,x) = 1.

Theorem 11.4 (Relationship of generator matrix Q and jump probability matrix P∗). For
continuous-time Markov chain X = (Xt)t∈[0,∞) with uniformly bounded jump rates (11.3)
and jump probability matrix P∗, the generator matrix (10.7, 10.7)

Q = lim
t→0

1

t
(Pt − P0) =

d

dt
Pt(x, y) ∣

t=0
(11.4)

exists and its entries are given by

Q(x, y) =
⎧⎪⎪⎨⎪⎪⎩

λ(x) ⋅ P∗(x, y), x ≠ y,
−λ(x), x = y.

(11.5)

In particular, if the total jump rate λ(x) ≠ 0 is nonvanishing for state x, then we have

λ(x) = −Q(x,x) and P∗(x, y) =
Q(x, y)
λ(x)

, y ≠ x.
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Proof sketch. The off-diagonal entries of Q can be obtained by the following heuristics — we
leave it as an exercise to mathematically oriented students to fill in the details to make the proof
precise. First, for Xt ≠X0 to be possible, the Markov chain has to have made at least one jump
before time t, so that τ1 ≤ t. Moreover, the event {T2 ≤ t} that the Markov chain has made more
than one jump before time t to hold would also require τ2 ≤ t.

Since by Theorem 11.2, the arrival times τ1 ∼ Exp(λ(X0)) and τ2 ∼ Exp(λ(Xτ1)) are inde-
pendent when conditioned on the event {X0 = x0, XT1 = x1}, we obtain37

P (T2 ≤ t ∣ X0 = x0, XT1 = x1)
≤ P (τ1 ≤ t, τ2 ≤ t ∣ X0 = x0, XT1 = x1)
= P (τ1 ≤ t ∣ X0 = x0, XT1 = x1) ⋅ P (τ2 ≤ t ∣ X0 = x0, XT1 = x1) [by Theorem 11.2]

≤ (1 − e−Λt)2 = (Λt)2 − (Λt)3 +⋯, [by (11.3)]

Summing over the possible states X0 = x0 and XT1 = x1 then yields

P (T2 ≤ t) = ∑
x0 ∈S

∑
x1 ∈S

P (T2 ≤ t ∣ X0 = x0, XT1 = x1) ⋅ P (X0 = x0, XT1 = x1)

≤ (1 − e−Λt)2 ∑
x0 ∈S

∑
x1 ∈S

P (X0 = x0, XT1 = x1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 1

= (1 − e−Λt)2 = (Λt)2 − (Λt)3 +⋯.

This shows that, up to linear order in t, the probability P (T2 ≤ t) equals zero (so it is quite
small). Note that the above estimate works regardless of the initial distribution X0 ∼ µ0.

Next, we take two distinct states x ≠ y and start Markov chain X at X0 = x. Note that if
T2 > t, then the event {Xt = y} is equivalent with the event {τ1 ≤ t and Xτ1 = y}. Moreover, by
Theorem 11.3 τ1 and Xτ1 are independent when conditioned to the event {X0 = x}. Since up to
linear order in t, the event {T2 > t} happens with probability 1, we have the approximation

Pt(x, y) ≈ P (τ1 ≤ t, Xτ1 = y ∣ X0 = x)
= P (τ1 ≤ t ∣ X0 = x) ⋅ P (Xτ1 = y ∣ X0 = x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
P∗(x,y)

[by Theorem 11.3]

= (1 − e−λ(x)t) ⋅ P∗(x, y), [as τ1 ∼ Exp(λ(x)) by Theorem 11.1]

up to linear order in t. Now, since the time-derivative at t = 0 only recovers the linear order in
time, we can compute the matrix element Q(x, y) by differentiating the right hand side of the
above approximation as in definition (10.7):

Q(x, y) = d

dt
Pt(x, y) ∣

t=0
= d

dt
(1 − e−λ(x)t)∣

t=0
⋅ P∗(x, y) = λ(x) ⋅ P∗(x, y). (11.6)

This gives the off-diagonal entries in the asserted equality (11.5).
To compute the diagonal entries Q(x,x) assuming λ(x) > 0, we can use the facts that the

row sums of Q equal zero by Lemma 10.8, the row sums of P∗ equal one since P∗ is a transition
matrix, and P∗(x,x) = 0 if λ(x) > 0, to obtain

Q(x,x) = − ∑
y≠x

Q(x, y) = − ∑
y≠x

λ(x)P∗(x, y) = −λ(x) ∑
y ∈S

P∗(x, y) = −λ(x).

On the other hand, if λ(x) = 0, then Q(x, y) = 0 for every y ≠ x, and since the row sums of Q
equal zero, we also must have Q(x,x) = 0 = −λ(x), as claimed.

37The jump rates λ(X0), λ(Xτ1) are random, but all assumed to be uniformly bounded by Λ as in (11.3).
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Example 11.5 (Taxis near Christmastime). We again return to Examples 10.3, 10.9, and 10.11.
Including the jump rates, Markov chain X = (Xt)t∈[0,∞) follows transition diagram

0 1 2 3

λ λ λ

κ 2κ 3κ

from which we can read the generator matrix encoding the jump rates:

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−λ λ 0 0
κ −λ − κ λ 0
0 2κ −λ − 2κ λ
0 0 3κ −3κ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

The total jump rate λ(x) away from state x ∈ {0,1,2,3} is

λ(0) = λ, λ(1) = λ + κ, λ(2) = λ + 2κ, λ(3) = 3κ.

From Theorem 11.4, we see that the jump probability is

P∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

κ

λ + κ
0

λ

λ + κ
0

0
2κ

λ + 2κ
0

λ

λ + 2κ
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.7)

In conclusion, the underlying embedded discrete-time Markov chain has transition diagram

0 1 2 3

1
λ

λ+κ
λ

λ+2κ

κ
λ+κ

2κ
λ+2κ

1

where the labels now are the discrete-time transition probabilities P∗(x, y). ∎

Note that as a directed graph, the discrete-time transition diagram agrees with that of
the continuous-time transition diagram of X = (Xt)t∈[0,∞), while the labels are different :

▷ the continuous-time transition diagram has the jump rates Q(x, y) as labels, whereas

▷ the discrete-time transition diagram has the transition probabilities P∗(x, y) as labels.

Example 11.6 (Taxis near Christmastime, continued). To demonstrate the usefulness of The-
orem 11.4, let us find the jump probabilities P∗(x, y), for x, y ∈ {0,1,2,3}, in Example 11.5 by
hand. We see that the computation can be rather tedious in general.

Some of the matrix entries of P∗ are clear from the model:

P∗(0,1) = 1, P∗(0, x) = 0, x ∈ {0,2,3},
P∗(3,2) = 1, P∗(3, x) = 0, x ∈ {0,1,3},
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and since the jump probabilities satisfy the law of total probability,

∑
y ∈S

P∗(x, y) = 1, for all x ∈ S,

we see that

P∗(1,0) + P∗(1,2) = 1 and P∗(2,1) + P∗(2,3) = 1.

Hence, we only have to solve for the two probabilities P∗(1,0) and P∗(2,1), say.

▷ We find using Theorem 9.10 (or Example 8.8) that

P∗(1,0) = P (Xt = 0 ∣ X0 = 1)
= P (the taxi ride ends before a new customer arrives)

= P (σ1 < τ1) =
κ

λ + κ
,

where τ1 ∼ Exp(λ) and σ1 ∼ Exp(κ). Hence, we also have P∗(1,2) = 1 − P∗(1,0) = λ
λ+κ .

▷ Similarly, we find that

P∗(2,1) = P (Xt = 1 ∣ X0 = 2)
= P (one of the two taxi rides ends before a new customer arrives)

= P (min{σ1, σ2} < τ1) =
2κ

λ + 2κ
,

where τ1 ∼ Exp(λ) and min{σ1, σ2} ∼ Exp(2κ), and thus, P∗(2,3) = 1 − P∗(2,1) = λ
λ+2κ .

This gives the same matrix (11.7) as above. ∎

11.3 Transition semigroup for general continuous-time Markov chains

Recall from Corollary 10.7 that the transition semigroup P = (Pt)t∈[0,∞) of continuous-time
Markov chain X = (Xt)t∈[0,∞) with generator matrix Q satisfies Kolmogorov’s backward differ-
ential equation (10.8):

d

dt
Pt = Q ⋅ Pt, t ∈ [0,∞),

P0 = I
(11.8)

By comparison to the analogous ordinary differential equation f ′(t) = af(t), we may infer that
the transition semigroup is given by

Pt = etQ =
∞
∑
n = 0

(tQ)n

n!
, t ∈ [0,∞).

This is indeed true, as we shall show below.

Definition. The matrix exponential (exponenttimatriisi) of a (possibly infinite) square-
matrix A is defined as a square-matrix

eA =
∞
∑
n = 0

An

n!

so that the (x, y):th entry of eA equals

eA(x, y) = lim
N→∞

N

∑
n = 0

1

n!
An(x, y) =

∞
∑
n = 0

1

n!
An(x, y). (11.9)
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It can be shown that the limit in (11.9) exists and gives a well-defined square-matrix whenever

∣∣A∣∣ = max
x∈S
∑
y ∈S
∣A(x, y)∣ < ∞.

The quantity ∣∣A∣∣ defines a norm on those matrices for which it is finite. This holds in particular
for the scaled generator matrix tQ of any continuous-time Markov chain with uniformly bounded
jump rates (11.3). Indeed, by Lemma 10.8 and Theorem 11.4, we have

∑
y ∈S
∣tQ(x, y)∣ = t ∣Q(x,x)∣ + t ∑

y≠x
Q(x, y) = 2 t∣Q(x,x)∣

= 2 tλ(x) ≤ 2 tΛ, for all x ∈ S,

which shows that

∣∣tQ∣∣ = max
x∈S
∑
y ∈S
∣tQ(x, y)∣ ≤ 2 tΛ < ∞. (11.10)

Theorem 11.7 (Transition semigroup as matrix exponentials). Transition matrices P =
(Pt)t∈[0,∞) of continuous-time Markov chain X = (Xt)t∈[0,∞) with uniformly bounded
jump rates (11.3) are given in terms of the generator matrix Q by the matrix exponential

Pt = etQ =
∞
∑
n = 0

tnQn

n!
. (11.11)

Proof sketch. By Theorem 11.4, the generator matrix Q = d
dtPt∣t=0 exists, and ∣∣tQ∣∣ < ∞

by (11.10). Hence, the matrix exponential etQ is well-defined. One can also show that Kol-
mogorov’s backward differential equation (11.8) in Corollary 10.7 with initial condition P0 = I
has a unique solution. It thus remains to show that the matrix exponential

P̃t = etQ =
∞
∑
n = 0

(tQ)n

n!
(11.12)

satisfies the same initial value problem (11.8). Separating the n = 0 term from the sum (11.12)
gives

P̃t =
(tQ)0

0!
+
∞
∑
n = 1

(tQ)n

n!
= I +

∞
∑
n = 1

tnQn

n!
.

Differentiating P̃t term-by-term (which can be justified since ∣∣tQ∣∣ < ∞) gives

d

dt
P̃t =

d

dt
I +

∞
∑
n = 1

d

dt

tnQn

n!
= 0 +

∞
∑
n = 1

ntn−1Qn

n!
= Q

∞
∑
n = 1

tn−1Qn−1

(n − 1)!
= QP̃t,

where in the last equality we recognize that the sum is the same as in (11.12) (the exchange
of infinite sum and multiplication by Q in the second-to-last equality can be justified since
∣∣Q∣∣ < ∞). Hence P̃t satisfies Kolmogorov’s backward differential equation (11.8), and it also has
the correct initial value:

P̃0 = I +
∞
∑
n = 1

(0Q)n

n!
= I.

By uniqueness of the solution to (11.8) we conclude that Pt = P̃t = etQ for every t ∈ [0,∞).
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Let us summarize the properties of continuous-time Markov chains. The following hold for
any continuous-time Markov chain X = (Xt)t∈[0,∞) with uniformly bounded jump rates (11.3).

▷ (Theorem 11.4): The generator matrix exists as the limit

Q = lim
t→0

1

t
(Pt − P0) =

d

dt
Pt(x, y) ∣

t=0
. (11.13)

▷ (Theorem 11.7): The transition matrices P = (Pt)t∈[0,∞) are given in terms of Q as

Pt = etQ =
∞
∑
n = 0

tnQn

n!
.

▷ (Theorem 10.5): The transition matrices P = (Pt)t∈[0,∞) form a transition semigroup:

Ps ⋅ Pt = Ps+t, for all s, t ≥ 0.

▷ (Corollary 10.7): The transition matrices solve Kolmogorov’s backward differential equation

d

dt
Pt = Q ⋅ Pt, t ∈ [0,∞),

and Kolmogorov’s forward differential equation

d

dt
Pt = Pt ⋅Q, t ∈ [0,∞).

(The latter can be proven completely similarly to Corollary 10.7.)

▷ (Theorem 10.10): Probability distribution π is an invariant distribution of X if and only if
the balance equation π ⋅Q = 0 holds (cf. (10.13)):

∑
x≠y

π(x) ⋅Q(x, y) = π(y) ⋅ ∑
z≠y

Q(y, z).

▷ (Theorems 11.2 & 11.3): The arrival times τ1, τ2, . . . of jumps for X = (Xt)t∈[0,∞) are
independent and identically distributed,

τn ∼ Exp(λ(x)) on the event {XTn−1 = x},

and the random variable XTn is independent of τn, conditioned on the event {XTn−1 = x}.

11.4 Poisson modulated Markov chains

So-called Poisson modulated chains provide a rich and versatile class of continuous-time Markov
chains. In fact, all continuous-time Markov chains with uniformly bounded jump rates (11.3) can
be represented as Poisson modulated chains, see Section 11.5. The idea is to take an underlying
discrete-time Markov chain and add randomness to when the jumps happen.

Definition. A Poisson modulated chain (Poisson-moduloitu Markov-ketju) on countable
state space S is a Markov chain X = (Xt)t∈[0,∞) of the form

Xt = YN(t), t ∈ [0,∞),

where

▷ Y = (Yn)n∈N0 is a discrete-time Markov chain on state space S, and

▷ N = (N(t))t∈[0,∞) is a Poisson process with intensity λ which is independent of Y .
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▷ Because the waiting times of the jumps of the Poisson process N = (N(t))t∈[0,∞) are inde-
pendent and Exp(λ)-distributed (by Theorem 8.5), it possible to show using the memoryless
property (Theorem 8.7) that X = (YN(t))t∈[0,∞) is indeed a continuous-time Markov chain
on state space S. We leave this as an exercise for an mathematically oriented reader.

▷ Any Poisson process can be seen as a special instance of a Poisson modulated chain, where
Yn = n is a Markov chain on N0 which deterministically moves one step up at every discrete
time step. (Recall Example 10.1.)

Theorem 11.8 (Poisson modulated chain). For any Poisson modulated Markov chain
X = (YN(t))t∈[0,∞), the generator matrix is given by

Q = λ ⋅ (P − I), (11.14)

where P is the transition matrix of the discrete-time chain Y .

Furthermore, X has the same invariant distributions as Y .

Proof. Let {T1, T2, . . .} be the Poisson point process of jump instants of the Poisson process N .
Then, by definition of X = (Xt)t∈[0,∞) = (YN(t))t∈[0,∞), we have (see Figure 11.1)

Xt =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Y0, 0 ≤ t < T1,
Y1, T1 ≤ t < T2,
Y2, T2 ≤ t < T3,
⋮

We compute the transition matrices of X using powers of the underlying discrete-time transition
matrix P . Conditioning on the Poisson-distributed number N(t) ∼ Poi(λt) gives

P (Xt = y ∣ X0 = x) =
∞
∑
n = 0

P (Yn = y ∣ Y0 = x) ⋅ P (N(t) = n)

=
∞
∑
n = 0

Pn(x, y) ⋅ e−λt (λt)
n

n!
= e−λt

∞
∑
n = 0

(λt)n

n!
⋅ Pn(x, y),

which shows that the time-t transition matrix Pt of the Poisson modulated chain X is given by

Pt = e−λt
∞
∑
n = 0

(λtP )n

n!
= e−λt I ⋅ eλtP , (11.15)

where e−λt I is the matrix exponential of −λt times the identity matrix I, and eλtP is the
matrix exponential of λt times the discrete-time transition matrix P . By applying the formula
eA ⋅ eB = eA+B (valid whenever the matrices A and B commute, i.e., AB = BA), we find that

Pt = e−λt I ⋅ eλtP = eλt (P−I) = etQ,

whereQ = λ⋅(P−I) is the generator matrix forX by Theorem 11.7. This proves Equation (11.14).
To prove the second claim, we multiply (11.14) by a distribution π from both sides:

πQ = λ ⋅ (πP − π).

From this, we see that πQ = 0 if and only if πP = π. Now, by Theorem 10.10 and Equation (2.2),
these are precisely the conditions for π to be invariant for X and Y , respectively.
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Figure 11.1: Path of a Poisson modulated chain on state space N0.

11.5 Uniformization of continuous-time Markov chains (overclocking)

We prove next that all continuous-time Markov chains with uniformly bounded jump rates (11.3)
can be represented as Poisson modulated chains. This is a useful tool for simulating continuous-
time Markov chains, as simulating a Poisson process is relatively easy. Furthermore, if one is
just interested in the long-term behavior of a continuous Markov chain, then by Theorem 11.8
it suffices to simulate the discrete-time Markov chain under the Poisson-modulated chain.

Consider continuous-time Markov chain X = (Xt)t∈[0,∞) on countable state space S, with
jump probability matrix P∗. We will assume throughout that jump rates {λ(x) ∶ x ∈ S} are
uniformly bounded by a constant Λ ∈ (0,∞) as in (11.3). This holds, for example, whenever
state space S is finite. We aim to prove that X can be represented as Poisson modulated chain
built from the data

{λ(x) ∶ x ∈ S} and {P∗(x, y) ∶ x, y ∈ S}.

To see this, we define a Poisson modulated chain

X̂t = ŶN(t), t ∈ [0,∞), (11.16)

where the jumps are governed by a Poisson process (N(t))t∈[0,∞) with constant intensity Λ, and
Ŷ = (Ŷ0, Ŷ1, Ŷ2, . . .) is an independent discrete-time Markov chain with transition matrix

P̂ (x, y) = λ(x)
Λ
⋅ P∗(x, y) + (1 −

λ(x)
Λ
) ⋅ I(x, y) (11.17)

= λ(x)
Λ
⋅ P∗(x, y) + (1 −

λ(x)
Λ
) ⋅ 1|{x = y}, x, y ∈ S. (11.18)

This matrix P̂ represents a discrete-time Markov chain Ŷ where at every time step we flip a
coin, and

▷ with probability λ(x)
Λ we move from x according to transition matrix P∗(x, y), while

▷ with probability 1− λ(x)
Λ we move from x according to transition matrix I(x, y) (that is, we

don’t move anywhere).

We prove that the Poisson modulated Markov chain (11.16) thus defined is, in fact, stochas-
tically the same as our original Markov chain X:
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Theorem 11.9 (Uniformization). Let X = (Xt)t∈[0,∞) be a continuous-time Markov chain
with bounded jump rates (11.3), transition matrix Q, and jump probability matrix P∗. Let
(N(t))t∈[0,∞) be a Poisson process with intensity Λ, and Ŷ = (Ŷ0, Ŷ1, Ŷ2, . . . ) a discrete-
time Markov chain with transition matrix P̂ with entries

P̂ (x, y) = λ(x)
Λ
⋅ P∗(x, y) + (1 −

λ(x)
Λ
) ⋅ I(x, y), x, y ∈ S.

Let X̂ = (X̂t)t∈[0,∞) be the Poisson modulated chain

X̂t = ŶN(t).

Then, the chains X̂ and X are stochastically the same.

Proof. Since by Theorems 11.2 and 11.3, continuous-time Markov chains are uniquely determined
by the jump-rates λ(x) and jump probabilities P∗, both of which are recoverable from the
generator matrix Q by Theorem 11.4, it is sufficient to verify that the generator matrices of X̂
and X agree. On the one hand, by Theorem 11.8 the generator matrix of X̂ is given by

Q̂(x, y) = Λ ⋅ (P̂ (x, y) − I(x, y)) = λ(x) ⋅ P∗(x, y) − λ(x) ⋅ 1|{x = y} [by (11.17)]

=
⎧⎪⎪⎨⎪⎪⎩

λ(x) ⋅ P∗(x, y), x ≠ y
−λ(x), x = y.

(11.19)

On the other hand, by Theorem 11.4 the generator matrix ofX is given by (11.5), which coincides
with (11.19).

117



12 Markov chain Monte Carlo methods

In this section, we again consider discrete-time Markov chains on countable state spaces.

Historically, “Monte Carlo methods” were initiated by physicists at Los Alamos Laboratory
during World War II (in investigations related to nuclear bombs). It is a general term for various
algorithmic methods that rely on random sampling (arguably, Monte Carlo is a famous casino).
The original Monte Carlo algorithm is based on the law of large numbers and can already be quite
effective for obtaining numerical results. Markov Chain Monte Carlo (MCMC) algorithms (such
as the famous Metropolis algorithm) are improvements involving an exploration on the system
of interest in the form of a random walk, or a more general Markov chain. These methods have
gained magnificent success in various areas: optimization, numerical integration, various engi-
neering subjects, probability theory, mathematical physics, risk management, business models,
etc. Though, quoting Alan Sokal (one of the pioneers in the subject) [Sok89] — “Monte Carlo
is an extremely bad method; it should be used only when all alternative methods are worse” —
often there are no good alternatives!

The central idea in MCMC is to design a judicious Markov chain model with prescribed
invariant distribution, and a sampling algorithm for it. The basis of MCMC is the Ergodic
theorem (this is a generalization of Theorem 3.1 to countable state spaces):

Theorem 12.1 (Ergodic theorem). For any irreducible (discrete-time) Markov chain
X = (X0,X1,X2, . . .) with invariant distribution π on countable state space S, we have

1

t

t−1
∑
s = 0

ϕ(Xs) Ð→ ∑
y ∈S

π(y) ⋅ ϕ(y), as t→∞,

for any function ϕ ∶ S → R with probability one, regardless of the initial state of the
Markov chain.

Indeed, the Ergodic Theorem guarantees that the invariant distribution is well approximated
by the empirical measures of the random states of the MCMC sampling algorithm.

12.1 Applications to numerical integration

The Monte Carlo method for numerical integration was developed by Stanislaw Ulam in the
1940s at Los Alamos Laboratory, where he was investigating neutron diffusion in the core of a
nuclear weapon. Essentially, the problem is to estimate with good enough precision integrals of
complicated functions, which are frequent in applications.

Example 12.2 (Numerical integration). As the first example, consider function f ∶ [0,1] → R.
Sample iid points X1,X2, . . . ,Xn in [0,1] uniformly at random. Then if n is large, we have

∫[0,1]
f(x) dx ≈ 1

n

n

∑
k = 0

f(Xk),

by the law of large numbers (or the Ergodic Theorem), since X1,X2, . . . ,Xn are independent.
The error made in this approximation of course depends on n,

ε(n) = 1

n

n

∑
k = 0
(f(Xk) − ∫[0,1]

f(x) dx),
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and we can estimate it quite easily. Since each Xk is sampled uniformly from [0,1], the random
numbers appearing in the sum,

Zk = f(Xk) − ∫[0,1]
f(x) dx

have zero expected value (in mathematical terms, one often says that they are centered):

E (Zk) = 0.

Hence, we obtain

E (ε(n)2) = E( 1

n2

n

∑
k,ℓ = 0

Zk ⋅Zℓ)

= 1

n2

n

∑
k,ℓ = 0

E (Zk ⋅Zℓ)

= 1

n2

n

∑
k = 0

E (Z2
k)

= 1

n2

n

∑
k = 0

E (Z2
1)

= n

n2
E (Z2

1)

= 1

n
E (Z2

1).

This goes to zero as n→∞ quite fast. ∎

In the above method, when applying it numerically, it would be more effective to sample the
test points Xk from intervals where the absolute value of the function f is large, which give the
main contribution to the integral

∫[0,1]
f(x) dx.

Therefore, one would want to focus on neighborhoods of the local maxima of the function ∣f ∣.

For functions f ∶ Rk → R whose domain has high dimension k, the above method has clear
drawbacks: sampling points uniformly from Rk is impossible, and finding the local maxima of
the function ∣f ∣ is computationally extremely costly as k grows. See also Example 12.5.

In 1953 Metropolis, Rosenbluth, Teller, and Teller developed a method based on a refinement
of the above ideas: instead of iid random test points, consider a Markov chain on the domain of
interest (Example 12.4). In this method, it is presumed that there is a probability distribution
π for the large values of ∣f ∣ and the goal is to design a Markov chain X = (X0,X1,X2, . . .) with
π as its invariant distribution.

12.2 Metropolis-Hastings algorithm

Suppose now that we have some complicated probability distribution π, and we should generate
samples from π. The idea in MCMC methods is that one designs a suitable Markov chain
X = (X0,X1,X2, . . .) whose invariant distribution is π, and lets it evolve for a long enough time
(how long is usually a difficult problem, while in practical applications the precision is often
deemed good enough by inspection — see also Theorem 12.14 for a matehamtical result).
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However, it is not so easy in general to find a transition matrix P with given invariant
distribution π. Also, there might be many such transition matrices, and one of the difficulties
is also to determine ones that are

▷ computationally efficient to simulate, and

▷ for which the convergence to the statistical equilibrium π is fast (which can be measured in
terms of so-called mixing time, see Equation (12.13) and Theorem 12.14).

Since it is difficult to find directly a suitable transition matrix P , it turns out to be practical
to start with a suitable proposal {p(x, y) ∶ x, y ∈ S} for a transition matrix, which is chosen to
be as easy to manipulate as possible.

Definition. For each state x ∈ S, transition matrix p determines the proposal distribu-
tion (ehdotusjakauma) via

p(x, y) = P (Y1 = y ∣ Y0 = x), y ∈ S,

where Y = (Y0, Y1, Y2, . . .) is the Markov chain with transition matrix p.

Recall that the detailed balance equations (5.11) (reversibility),

π(x) ⋅ P (x, y) = π(y) ⋅ P (y, x), for all x, y ∈ S, (12.1)

guarantee the existence of an invariant distribution. Assume that our transition matrix p fails
to satisfy (12.1): if we have

π(x) ⋅ p(x, y) > π(y) ⋅ p(y, x), for some x, y ∈ S, (12.2)

then the proposal distribution causes the Markov chain to move from x to y too often. There-
fore, we want to tone down transitions from x to y: we modify the transition probabilities
in p by accepting transitions from x to y with probability α(x, y), called acceptance probabil-
ity (hyväksymistodennäköisyys). Once we do this, we can make an ansatz

P (x, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

p(x, y) ⋅ α(x, y), x ≠ y,

1 − ∑
z≠x
p(x, z) ⋅ α(x, z), x = y,

where it remains to determine the acceptance probabilities α. Since the Markov chain moves
from y to x too rarely, we set α(y, x) = 1. Then, from the detailed balance equations (12.1), we
see that

π(x) ⋅ p(x, y) ⋅ α(x, y) = π(y) ⋅ p(y, x) ⋅ α(y, x)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
= 1

= π(y) ⋅ p(y, x),

from which we can solve

α(x, y) = π(y)
π(x)

⋅ p(y, x)
p(x, y)

.

120



Theorem 12.3 (Metropolis-Hastings algorithm). Let π be a probability distribution on
countable state space S. Let P and p be two transition matrices on S such that

P (x, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

p(x, y) ⋅ α(x, y), x ≠ y,

1 − ∑
z≠x
p(x, z) ⋅ α(x, z), x = y,

(12.3)

wherea

α(x, y) = min{π(y) ⋅ p(y, x)
π(x) ⋅ p(x, y)

, 1}. (12.4)

Then, P and π satisfy the detailed balance equations (12.1), that is, P is π-reversible.
aIf π(x) ⋅ p(x, y) = 0, Equation (12.4) is understood as α(x, y) = 1.

Proof. One can verify this by a direct computation, which we leave as an exercise.

Note that the Theorem 12.3 does not guarantee uniqueness of the invariant distribution.
Indeed, if some states have zero probability, then the Markov chain with transition matrix P
may contain several components, in which case the Metropolis-Hastings algorithm only explores
one component and might not give a representative sample. However, if the proposal transition
matrix p is irreducible and π(x) > 0 for all x ∈ S, then the transition diagram of the Markov
chain coincides with the one given by p. In this case, the Markov chain is irreducible and π is
its unique invariant distribution.

Importantly, to compute acceptance probabilities (12.4), we only have to compute the ratios

π(y)
π(x)

,

so that we do not in fact need to know the whole distribution π but only the relative proportions.
Indeed, in many applications (especially in statistical physics) the distribution has the form

π(x) = ω(x)
∑
y ∈S

ω(y)
,

where only the probability amplitudes ω(x) are known, but the normalizing factor

Z = ∑
y ∈S

ω(y)

is hard to compute. Thus, it may be very difficult to analyze the distribution π directly, but for
the Metropolis-Hastings algorithm, one does not need to compute Z. We will return to this in
Examples 12.6 and 12.8.

Example 12.4. Metropolis algorithm (Metropolis-algoritmi) is a special case of Metropolis-
Hastings algorithm38. In the Metropolis algorithm, the proposal distribution is assumed to be
symmetric:

p(x, y) = p(y, x), for all x, y ∈ S.
38Historically, it was developed in 1953 by Metropolis, Rosenbluth, Teller, and Teller, for a specific stationary

distribution. Hastings later in 1970 generalized it to the form above.

121



From the detailed balance (12.1) equations, we then see that

α(x, y) = π(y)
π(x)

⋅ p(y, x)
p(x, y)

= π(y)
π(x)

.

∎

Example 12.5 (Optimization). Consider function f ∶ V → R, where V = {x1, x2, . . . , xn} is
the node set of a large undirected graph G = (V,E) with edge set E. We call nodes x and y
neighbors if (x, y) ∈ E is an edge in G.

It is often of interest to find those areas in V where f is large — for example, when the graph
approximates some high-dimensional domain of a real-valued function (e.g. in an analogue of
Example 12.2 for a function from Rk to R). However, for n = ∣V ∣ very large, searching the relevant
areas in V may be computationally very expensive. Designing a suitable MCMC method can
provide an algorithm in order logn, as Theorem 12.15 discussed in Section 12.5 shows.

The hill-climb (“steepest ascent”) algorithm is a Markov chain X = (X0,X1,X2, . . .) which
moves in V as follows:

▷ it starts at some node x ∈ V , so that X0 = x,

▷ it checks whether at any neighbor of x, the value of f is (strictly) larger:

f(y) > f(x) for some neighbor y ∈ V of x Ô⇒ X1 = arg max
y ∶ (x,y)∈E

f(y),

that is, it moves to the neighbor where the value of f is the largest,

▷ and if there is no such neighbor, it stays put:

f(y) ≤ f(x) for all neighbors y ∈ V of x Ô⇒ X1 = x.

This however is only a useful algorithm if one wants to find a local maximum of f . If f has many
maxima, depending on where the Markov chain X starts from, it can get stuck in a different
local maximum, which may not be the global maximum. One can improve the algorithm by
adding randomness: allow X also to move to nodes with smaller values of f with some (small)
probability. To demonstrate one possibility, define a distribution

πa(x) =
af(x)

∑
y ∈S

af(y)
= af(x)

Zπa

,

where a > 1 is a constant, and the normalizing factor is

Zπa = ∑
y ∈S

af(y).

Then, πa is a probability distribution on V , which favors nodes where f is large (since a > 1).
As a convenient proposal distribution, consider random walk Y = (Y0, Y1, Y2, . . .) on an

undirected graph G (recall Example 4.2), that is, a Markov chain that proceeds by moving at
each step to a neighboring node selected uniformly at random:

p(x, y) =
⎧⎪⎪⎨⎪⎪⎩

1
deg(x) , if x and y are neighbors, i.e.,, (x, y) ∈ E
0, otherwise.

The Metropolis-Hastings algorithm (Theorem 12.3) then gives a Markov chain on V whose
invariant distribution is πa. The acceptance probabilities (12.4) are given by

α(x, y) = min{af(y)−f(x) ⋅ deg(x)
deg(y)

, 1}. (12.5)
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Indeed, when a → ∞, we see that the chain becomes the deterministic hill-climb (steepest
ascent) method. More precisely, writing

fmax = max
y ∈V

f(y) and Vmax = {y ∈ V ∶ f(y) = fmax},

we obtain

πa(x) =
af(x)

∑
y ∈S

af(y)
= af(x)

∑
y∈Vmax

af(y) + ∑
y∉Vmax

af(y)

= af(x)−fmax ⋅ 1

∑
y∈Vmax

af(y)−fmax + ∑
y∉Vmax

af(y)−fmax

= af(x)−fmax ⋅ 1

∑
y∈Vmax

1 + ∑
y∉Vmax

af(y)−fmax

= af(x)−fmax ⋅ 1

∣Vmax∣ + ∑
y∉Vmax

af(y)−fmax

a→∞Ð→ 1|{x ∈ Vmax}
∣Vmax∣

,

since f(y) − fmax < 0 for y ∉ Vmax and a > 1, so af(y)−fmax Ð→ 0 as a→∞. We conclude that

lim
a→∞

πa(x) =
1|{x ∈ Vmax}
∣Vmax∣

,

so πa converges as a→∞ to the uniform distribution on the global maxima Vmax of f . ∎

12.3 Sampling a random function — local updates

In many applications, one would like to sample a function randomly. Generally, however, the
set of all functions is very large, so direct sampling may be very difficult even for relatively
simple distributions. Perhaps MCMC algorithms could help here? Below, we will consider
random functions between two finite sets, but ideas presented here generalize also to more
general settings.

For two sets A and V , we denote by S = AV the set of all functions39 from V to A:

S = AV = {f ∶ V → A}.

Example 12.6 (Boltzmann distributions). In statistical mechanics, one studies a large num-
ber of interacting particles with properties such as magnetization (Example 12.9), position, or
velocity. One is often interested in the effect of temperature to the system. To numerically
study this, one needs to be able to effectively simulate a statistical system for a wide range of
temperatures.

A state of a statistical system is an assignment of a property to each particle. If we denote
by V the (finite) set of particles of the system and by A the (finite) set of possible values that
the property of each particle can take, then we can encode a state as a function f ∶ V → A.
The set of all possible states (that is, the state space) is thus naturally S = AV . The energy of

39The notation AV can be understood as the set of A-valued vectors indexed by V , which in turn can be
thought as a function from V to A. This justifies the notation.
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the system depends on the state, so it is a function H ∶ S → R called the energy functional, or
Hamiltonian. H commonly has the form

H(f) = ∑
x ∈V

U(f(x)) + 1

2
∑

x,y ∈V
x≠y

I(f(x), f(y)), (12.6)

where U(f(x)) represents the potential energy of particle x and I(f(x), f(y)) denotes the in-
teraction between particles x and y. The interaction is assumed to be symmetric:

I(f(x), f(y)) = I(f(y), f(x)).

Now, if we denote by β > 0 the inverse temperature of the system, then (with some physically
reasonable assumptions) the entropy of the system is maximized by the Boltzmann distribu-
tion (Boltzmann-jakauma) π on S given by

π(f) = 1

Zβ
e−βH(f),

where the normalizing factor

Zβ = ∑
f ∈S

e−βH(f)

is called the partition function in the physics context. The ratio of probabilities of states f, g ∈ S
equals

π(g)
π(f)

=
1
Zβ
e−βH(g)

1
Zβ
e−βH(f)

= eβ(H(f)−H(g)). (12.7)

Hence, to effectively apply Metropolis-Hastings algorithm to a Boltzmann distribution, one needs
to be able to efficiently compute differences H(f) −H(g) of energies between two states. With
a clever choice of proposal distribution, plugging (12.6) to the difference H(f)−H(g) results in
cancellation of most terms in the sums. Thus, the difference of energies can be computed much
faster than energy of a single state. We will return to this idea in Example 12.8. ∎

Suppose now that we have a distribution π on the set S = AV of functions that we want
to sample using Metropolis-Hasting algorithm (Theorem 12.3). We shall build the proposal
distribution {p(f, g) ∶ f, g ∈ S} via a procedure referred to as local update (lokaali muutos). It
is performed by randomly changing the value of the function f in one place as follows.

Theorem 12.7 (Local update). Let V and A be finite sets, and let π be a distribution
on the set AV = {f ∶ V → A} of functions. Let X = (X0,X1,X2, . . .) be a Markov chain
on state space S = AV defined by iterated local update: given Xt = f , set Xt+1 by the
following algorithm:

1. Choose an element v ∈ V uniformly at random.

2. Choose an element a ∈ A∖{f(v)} uniformly at random.

3. Define a function f̃av ∶ V → A by changing the value of f(v) to a:

f̃av (x) =
⎧⎪⎪⎨⎪⎪⎩

f(x), x ≠ v,
a, x = v.

(12.8)

4. With probability α(f, f̃av ) =min{π(f̃
a
v )

π(f) ,1} set Xt+1 = f̃av , and otherwise, keep Xt+1 = f .

Then, the Markov chain X is π-reversible, and π is an invariant distribution of X.
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Note that by using (12.3), we can find the entries of the transition matrix P of X.

Proof. Let us write g↔ f for functions f, g ∈ AV satisfying (12.8) with some v and a. As there
are ∣V ∣ possible choices for v ∈ V and ∣A ∣ − 1 choices for a ∈ A∖{f(v)}, and we make these
choices independently and uniformly at random, we see that the relevant proposal distribution
is given by

p(f, g) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

∣V ∣ ⋅ (∣A∣ − 1)
, g↔ f,

0, otherwise.

Note that, after obtaining g = f̃av , we can get back to f by changing the value of f̃av (v) back to
a. Hence, the proposal distribution is symmetric (p(f, g) = p(g, f)), so this is the special case of
Metropolis algorithm (Example 12.4). The acceptance probabilities are thus simply given by

α(f, g) =min{π(g)
π(f)

, 1}.

Theorem 12.3 implies that X is π-reversible, and π is an invariant distribution of X.

Example 12.8 (MCMC on Boltzmann distributions). Returning to Example 12.6, let us com-
pute the acceptance probabilities α(f, f̃av ) = min{π(f̃

a
v )

π(f) ,1} from Theorem 12.7 for f, f̃av ∈ AV

satisfying (12.8). From Equations (12.7, 12.6), we obtain

π(f̃av )
π(f)

= exp (β(H(f) −H(f̃av )))

= exp (β ∑
x ∈V
(U(f(x)) −U(f̃av (x))) +

β

2
∑

x,y ∈V
x≠y

(I(f(x), f(y)) − I(f̃av (x), f̃av (y)))).

Since f̃av (x) = f(x) for all x ≠ v, in the first sum only the term x = v survives, while in the
second sum the terms with x = v or y = v survive. Since I is assumed to be symmetric, we can
rewrite the above formula as

π(f̃av )
π(f)

= exp (β(U(f(v)) −U(f̃av (v))) + β ∑
x∈V
x≠v

(I(f(v), f(x)) − I(f̃av (v), f̃av (x)))),

Hence, instead of computing energies between every pair of particles (the number of which is
∣V ∣2), one needs to only compute energies between each particle with particle v, which we have
updated (which only requires ∣V ∣ computations). If the long-range interaction between particles
is small, it may even be enough to compute the interaction only for those x ∈ V which are “near
enough” to v for the interaction energy to contribute to the total energy. See Example 12.9. ∎

Let us apply Example 12.8 to a system where particles are constrained to lie on a graph. Let
us also assume that particles living on the nodes only interact with their neighboring particles.

Example 12.9 (Ising model). Consider an undirected graph G = (V,E) with finite node set
V and edge set E. We call nodes x and y neighboring if (x, y) ∈ E is an edge in G. A spin
configuration is an assignment

σ ∈ Σ = {−1,+1}V = {f ∶ V → {−1,+1}}

where −1 and +1 represent spins at the nodes. Ising model is a Boltzmann distribution on the
set Σ of all spin configurations, modelling magnets each (node x ∈ V ) having one of the two
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possible orientations represented by −1 and +1. A spin configuration represents the random
orientations of these magnets. The Hamiltonian (12.6) is40

H(σ) = − ∑
x,y ∈V
(x,y)∈E

σ(x) ⋅ σ(y)

(so the potential energy equals zero, and the interaction is trough nearest neighbors).
Local updates according to Theorem 12.7 flip possibly one spin at some node v ∈ V at a time.

Recall that the associated Markov chain X = (X0,X1,X2, . . .) on state space S = Σ is given by
the following transitions: if Xt = σ, then

1. choose an element v ∈ V uniformly at random;

2. flip the spin σ(v) at v (since there are just two possible spins, there is no choice in this
step), so it becomes −σ(v);

3. according to (12.8), define

σv(x) =
⎧⎪⎪⎨⎪⎪⎩

σ(x), x ≠ v,
−σ(v), x = v;

(12.9)

4. and set Xt+1 = σv with acceptance probability α(σ,σv) =min(π(σv)
π(σ) ,1), where by (12.7),

π(σv)
π(σ)

= eβ(H(σ)−H(σv)) = exp ( − 2βσ(v) ⋅ ∑
x ∈V
(x,v) ∈E

σ(x)),

and otherwise, keep Xt+1 = σ.

(This is discussed in more detail in the exercises.) ∎

12.4 Convergence to statistical equilibrium

This section is primarily aimed for mathematically oriented readers.

A key result in the theory of Markov chains is the Convergence Theorem 5.6, which gives a
uniqueness (but unfortunately not in general existence) criterion for π.

Theorem 12.10 (Uniqueness of invariant distribution). Every irreducible and aperiodic
Markov chain on a countable state space admits at most one invariant distribution.

If the invariant distribution π exists, then it also equals the unique limiting distribution,

lim
t→∞

P (Xt = y ∣ X0 = x) = π(y), for all x, y ∈ S. (12.10)

If the invariant distribution π exists (e.g., if the Markov chain can be verified to be π-
reversible, recall Theorem 5.7) a basic but important problem of Markov chain theory concerns
the rate of convergence in (12.10):

How long must the Markov chain be run to be “suitably close” to π? .

40Note that as β → 0 (infinite temperature), the model just becomes the uniform distribution on Σ and the
interaction plays no role. In contrast for large β the effects from the interaction dominate.
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It is customary to measure distances between two probabilities by the so-called total variation
distance. In essence, the total variation distance looks at the maximal difference of probabilities
of events A measured by two probability distributions.

Definition. For two probability distributions µ and ν on state space S, the total variation
distance (kokonaisvaihteluetäisyys) is

∣∣µ − ν ∣∣TV = max
A ⊂ S

∣µ(A) − ν(A) ∣. (12.11)

We can estimate the distance of the distribution µxt of Markov chain X started at X0 = x,

µxt (y) = P (Xt = y ∣ X0 = x), y ∈ S,

(recall Theorem 5.3) to its statistical equilibrium π in terms of the total variation distance:

∣∣µxt − π ∣∣TV = max
A ⊂ S

∣µxt (A) − π(A) ∣. (12.12)

Since in order to evaluate it (12.12), we would have to compute probabilities of all events, it
is not very practical as such. However, there is an easier formula, given by the next result.

Theorem 12.11 (Total variation distance). For two probability distributions µ and ν on
state space S, we have

∣∣µ − ν ∣∣TV =
1

2
∑
y ∈S
∣µ(y) − ν(y) ∣.

Proof. Consider the set B = {y ∈ S ∶ µ(y) ≥ ν(y)}. Then, we have

µ(A) − ν(A) ≤ µ(A ∩B) − ν(A ∩B) [as µ(y) − ν(y) < 0 for all y ∈ A ∩Bc]
≤ µ(B) − ν(B),

and similarly,

ν(A) − µ(A) ≤ ν(A ∩Bc) − µ(A ∩Bc) ≤ ν(Bc) − µ(Bc).

Now, observe that in fact, since µ and ν are probability distributions, the law of total probability
gives

µ(B) + µ(Bc) = 1 = ν(B) + ν(Bc) Ô⇒ µ(B) − ν(B) = ν(Bc) − µ(Bc).

Therefore, we obtain

∣µ(A) − ν(A) ∣ ≤ µ(B) − ν(B), A ⊂ S,

and in particular,

∣µ(B) − ν(B) ∣ = µ(B) − ν(B) = ν(Bc) − µ(Bc),
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so that the total variation distance (12.12) equals

∣∣µ − ν ∣∣TV = max
A ⊂ S

∣µ(A) − ν(A) ∣ = ∣µ(B) − ν(B) ∣ = 1

2
((µ(B) − ν(B)) + (ν(Bc) − µ(Bc)))

= 1

2
∑
y ∈S
∣µ(y) − ν(y) ∣,

as claimed.

While Theorem 5.6 gives the convergence to the statistical equilibrium π (if it exists), it is
in general a very hard problem to estimate the rate of convergence in

∣∣µxt − π ∣∣TV = max
A ⊂ S

∣µxt (A) − π(A) ∣ =
1

2
∑
y ∈S
∣µxt (y) − π(y) ∣

t→∞Ð→ 0.

One can measure the required time that the Markov chain has to run before it is close to the
statistical equilibrium by the so-called mixing time.

Definition. The mixing time (sekoittumisaika) for Markov chainX and parameter ε > 0 is

tmix(ε) = min{t ≥ 0 ∶ max
x ∈S
∣∣µxt − π ∣∣TV ≤ ε}. (12.13)

Note that it is, by definition, independent of the initial value X0 = x.

Rigorous upper bounds on mixing times provide us confidence that simulation studies or
randomized algorithms indeed perform as advertised. See [LPW08] for a thorough discussion.

Example 12.12. Recall that in the proof of the Convergence Theorem 5.6, we found the upper
bound (5.10),

∑
y ∈S
∣ µxt (y) − π(y) ∣ = ∑

y ∈S
∣ P (Xt = y ∣ X0 = x) − π(y) ∣ = 2P (τ > t),

in terms of the first time (5.8)

τ = min{t ≥ 0 ∶ Xt = Yt} (12.14)

when two independent copies X and Y of our Markov chain (both having transition matrix
P ) such that X has initial state X0 = x and Y has initial distribution π, meet. We see using
Theorem 12.11 that

∣∣µxt − π ∣∣TV =
1

2
∑
y ∈S
∣µxt (y) − π(y) ∣ = P (τ > t).

Thus, the coupling method gives means to bound the total variation distance: estimates on the
“tail distribution”41 of the random meeting time τ , encoded in the probabilities {P (τ > t) ∶ t ∈
[0,∞]}, give estimates for the convergence rate of the Markov chain. ∎

41This may a priori depend on the initial state X0 = x.
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12.5 Convergence estimates for reversible chains

This section is primarily aimed for mathematically oriented readers.

In the Metropolis-Hastings algorithm, we constructed the transition matrix P to be π-
reversible for simplicity. It turns out that π-reversibility is convenient also for studying con-
vergence rates of the underlying Markov chain. Let us consider the case of a finite state space.

Suppose that S = {x1, x2, . . . , xn} is finite with cardinality (size) ∣S∣ = n. Suppose that
transition matrix P is π-reversible for some probability distribution π:

π(x) ⋅ P (x, y) = π(y) ⋅ P (y, x), for all x, y ∈ S
∑
x ∈S

π(x) = 1.

Then, there exists a diagonal matrix Λ = diag[
√
π(1),

√
π(2), . . . ,

√
π(n)] such that

Psym = Λ ⋅ P ⋅Λ−1

is a symmetric matrix. Indeed, we have

Psym(x, y) = (Λ ⋅ P ⋅Λ−1)(x, y) =
√
π(x)
√
π(y)

⋅ P (x, y)

=
√
π(y)
√
π(x)

⋅ P (y, x) = Psym(y, x). [by detailed balance (12.1)]

(We know that π(z) > 0 by Theorem 5.4.) Hence, it is easy to study the spectral theory of Psym:

▷ the eigenvalues λ1, λ2, . . . , λn of Psym are real,

▷ Psym is diagonalizable and it has orthonormal eigenvectors ψ1, ψ2, . . . , ψn,

Psym ⋅ ψk = λk ⋅ ψk, k = 1,2, . . . , n.

Since P is related to Psym by conjugation by a diagonal matrix, also P has eigenvalues
λ1, λ2, . . . , λn ∈ R, and corresponding right and left eigenvectors

ϕk = Λ−1 ⋅ ψk and φk = (Λ ⋅ ψk)T ,

so that

P ⋅ ϕk = λk ⋅ ϕk and φk ⋅ P = φk ⋅ λk, k = 1,2, . . . , n.

We can write a spectral decomposition for the t:th power of P as

P t =
n

∑
k = 1

φk ⋅ λtk ⋅ ϕk

=
n

∑
k = 1
(Λ ⋅ ψk)T ⋅ λtk ⋅ ϕk

=
n

∑
k = 1
(Λ2 ⋅Λ−1 ⋅ ψk)T ⋅ λtk ⋅ ϕk = Λ2 ⋅

n

∑
k = 1

ϕTk ⋅ λ
t
k ⋅ ϕk.

Therefore, since Λ2 = diag[π(1), π(2), . . . , π(n)], we see that

P t(x, y) = π(y) ⋅
n

∑
k = 1

λtk ⋅ ϕ
T
k (x) ⋅ ϕk(y), Ô⇒ P t(x, y)

π(y)
=

n

∑
k = 1

λtk ⋅ ϕk(x)
T ⋅ ϕk(y).

(12.15)

129



(See [LPW08, Chapter 12] for more details.)

Lemma 12.13. The following hold for any n × n transition matrix P .

▷ Its eigenvalues satisfy ∣λk∣ ≤ 1 for all k = 1,2, . . . , n.

▷ 1 is always an eigenvalue of P . The row-vector [1, 1, . . . , 1]T is a right eigenvector
of P with eigenvalue 1.

▷ If P is irreducible and aperiodic, then −1 is not an eigenvalue of P .

Proof. Recall that transition matrix is a function P ∶ S × S → [0,1] such that

∑
y ∈S

P (x, y) = 1, for all x ∈ S.

The claims can be checked via relatively simple linear algebra using these properties42.

By Lemma 12.13, we may order the eigenvalues of any π-reversible transition matrix P as

λn ≤ λn−1 ≤ ⋯ ≤ λ2 ≤ λ1 = 1.

Note also that λn ≥ −1. Hence, with λ1 = 1, the spectral decomposition from (12.15) yields

P t(x, y)
π(y)

= 1 +
n

∑
k = 2

λtk ⋅ ϕk(x)
T ⋅ ϕk(y),

and if P is irreducible and aperiodic (so that −1 is not an eigenvalue), we see that the factors in
the sum over k ≥ 2 become small in absolute value as time grows:

∣λk∣t
t→∞Ð→ 0.

Definition.

▷ The spectral gap (spektrin rako) of P is defined as

γ = 1 − λ2.

▷ The absolute spectral gap (spektrin itseisarvon rako) of P is defined as

γ∗ = 1 − λ∗,

where λ∗ =max{∣λk∣ ∶ λk ≠ 1} is the second largest eigenvalue of P in absolute value.

Note that, if P is irreducible and aperiodic, then it has a non-zero absolute spectral gap
γ∗ > 0 by Lemma 12.13 (since −1 is not an eigenvalue of P ). The absolute spectral gap γ∗ can
be used to estimate the mixing time, as the next results shows.

42See [LPW08, Lemmas 12.1 and 12.2] for hints.

130



Theorem 12.14 (Mixing time). Let P be irreducible, aperiodic, and π-reversible. Then,
the mixing time (12.13) is bounded as

( 1
γ∗
− 1) log ( 1

2ε
) ≤ tmix(ε) ≤

1

γ∗
log ( 1

επmin
)

where γ∗ = 1 − λ∗ and

πmin = min
y ∈S

π(y) > 0.

Proof. See [LPW08, Theorems 12.4 and 12.5].

From Theorem 12.14, one can conclude that the convergence in Theorem 5.6 occurs at an
exponential rate, that is governed by the second largest eigenvalue λ∗ of P in absolute value.

Theorem 12.15 (Exponential convergence). Let P be irreducible, aperiodic, and π-
reversible. Then, the maximal total variation distance (12.12) of the time-t distribution
of the corresponding Markov chain X to its statistical equilibrium π is bounded as

lim
t→∞

max
x ∈S

∣∣µxt − π ∣∣
1/t
TV = λ∗.

Proof. See [LPW08, Corollary 12.7].

We warmly recommend the lecture notes [LPW08, Corollary 12.7] for interested readers
about mixing times. For more discussion and references especially related to MCMC methods,
see [LPW08, Chapter 3] and [Sok89] (a bit old, but classic), as well as [RC10] highlighting
applications.
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