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Abstract

As is known from the 1980s, CFT should describe scaling limits of critical lattice models
in statistical mechanics (i.e., fixed points of the renormalization group flow). One might
argue that two-dimensional (2D) CFTs — at least minimal models and Liouville theory —
are completely understood since the pioneering works by Belavin–Polyakov–Zamolodchikov
[Pol70, Pol81, BPZ84a, BPZ84b], Dorn & Otto [DO94], the Zamolodchikov brothers [ZZ96],
Teschner [Tes95], and many others. However, a closer inspection reveals that CFTs rele-
vant to models containing lattice interfaces, or random curves in the continuum, cannot
be described by minimal models, seem to exhibit logarithmic phenomena, and even their
spectrum (operator content) seems not to be completely clear (see, e.g., [Car13, CR13]).

In the random geometry community, about 25 years ago a breaktrough idea came along:
Schramm [Sch00, Sch06] suggested that probabilistically, such interface models could be rig-
orously described by combining classical complex analysis (namely, Loewner theory [Loe23])
with stochastic analysis (namely, Brownian motion and martingale theory). This provided
a wonderful description of scaling limits of lattice interfaces, and turned out to have deeper
roots than perhaps originally anticipated. Indeed, Schramm’s random SLE curves also share
an intrinsic connection with the geometric and algebraic content in CFT. On the one hand,
such curves emanating at boundary or bulk points relate to specific Virasoro modules in the
theory — in particular, in the case of boundary phenomena they correspond to degenerate
field insertions, which can be studied completely rigorously in terms of probability and PDE
theory. (I plan to focus on this connection, which is simpler and more developed.) On
the other hand, the action functional for SLE loops is closely related to the universal Liou-
ville action and Kähler geometry on Teichmüller space, although the associated correlation
functions therein remain more mysterious. (Hence, I plan not to discuss this connection.)

I will try to describe how correlation functions in 2D CFTs (with central charge c ≤ 1) can
be concretely understood in terms of the random interface models, giving rise to a complete
description of crossing probabilities and chiral boundary/diagonal-bulk conformal blocks for
degenerate fields. I explain some emergent quantities in the semiclassical limit c → −∞,
which appear as accessory parameters for certain geometric problems in Teichmüller theory,
and whose dynamics is described by classical integrable Calogero-Moser type systems.
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Left: A configuration of the critical Ising model. Right: A configuration of a semiclassical limit of SLE curves.
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1 Introduction — What is CFT?

These lectures are targeted to a mixed audience working on different aspects of CFT. To highlight
the ideas and remove technicalities, the text is presented in a narrative manner, and some
citations for precise results are given along the way (more might be added later).

The presentation is not meant to be a complete account on the topic — I wonder if one can
ever say that CFT has been completely understood and an complete account could be provided...

1.1 What is CFT?

There are many definitions for “conformal field theory” (CFT), with many differences and simi-
larities (and none are probably completely equivalent). For example, a “CFT” might refer to:

▷ Quantum field theory (QFT) with additional conformal symmetry.

▷ Vertex operator algebra (VOA) and a module for it.

▷ Representation theory of Virasoro algebra (or extended symmetry algebras containing it).

▷ (Segal) functor from Riemann surfaces (cobordisms) to vector spaces (or modules, etc.).

▷ (Feynman) path integral that is conformally invariant.

▷ Scaling limit of critical lattice model from statistical mechanics.

▷ Collection of consistent correlation functions (possibly with a Virasoro action).

▷ Something else?

Everyone working on this area can decide which point of view is their favorite. Or (like
me) resort to working with whichever point of view is appropriate for each situation. In these
lectures, we will focus on aspects of the correlation function point of view for 2D CFTs with
central charge c ≤ 1. These are motivated on the one hand from scaling limits of critical lattice
models and on the other hand from models for random conformally invariant curves (SLEs).

1.2 Correlation functions in CFT

This section is meant for refreshing background material for the purposes of the correlation
function point of view that we are going to take in these lectures. For readers familiar with
CFT, this section can be easily skipped — and one can come back to it to when
needed. (One can safely proceed to Section 2 where the main content of the lectures begins.)

Let us emphasize that in CFT, the fields themselves might not be analytically well-defined
objects, but nevertheless, their correlation functions are well-defined functions. As a concrete
example, Liouville CFT was recently constructed completely rigorously [DKRV16, KRV20] com-
bining the ideas of [Tes95] (and others) with a very powerful probabilistic technique. However,
for instance for some objects in the critical Ising model (discussed below), the CFT description
is not completely clear [GK25]. (A scaling limit of the Ising energy field should morally be a
product of two spin fields — but how does one multiply random distributions?)

Thus, we will be mainly interested in correlation functions in CFT, which describe — in some
sense — the physical observables in the models of interest. Let us focus on chiral theory on the
Riemann sphere Ĉ or a subset of it. Then, correlation functions are analytic (multi-valued)
functions F ∶ Wn → C (also called n-point functions) defined on the configuration space

Wn ∶= {(z1, . . . , zn) ∈ Cn ∣ zi ≠ zj if i ≠ j}.
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Physicists speak of correlation functions as “vacuum expectation values” of (primary) fields
ϕιi(zi) labeled by some indices ιi and denote them by

Fι1,...,ιn(z1, . . . , zn) = ⟨ϕι1(z1) ⋯ ϕιn(zn)⟩.

Because of the conformal symmetry, the correlation functions are assumed to be covariant under
(global) conformal transformations. In a CFT on the full Riemann sphere Ĉ = C ∪ {∞}, this
means that under all Möbius transformations1 f ∈ PSL(2,C), we have

Fι1,...,ιn(z1, . . . , zn) =
n

∏
i=1
∣f ′(zi)∣∆ιi × Fι1,...,ιn(f(z1), . . . , f(zn)),

with some conformal weights ∆ιi ∈ R associated to the fields ϕιi .
Notably, global conformal invariance only results in finitely many (three) constraints for the

physical system. However, Belavin, Polyakov, and Zamolodchikov (BPZ) observed in the 1980s
that, in two dimensions, imposing local conformal invariance yields infinitely many independent
symmetries [BPZ84a, BPZ84b]. On Ĉ, the local conformal transformations are just the locally
invertible holomorphic and anti-holomorphic maps — see, e.g., [Sch08, Chapters 1,2,5] for details.

1.3 Conformal symmetry and Virasoro algebra

Roughly speaking, in CFT à la BPZ, one regards the local conformal invariance as invariance un-
der infinitesimal transformations (or vector fields which generate the local conformal mappings):
for instance, the infinitesimal holomorphic transformations are written as Laurent series,

z ↦ z + ∑
n∈Z

anz
n,

which can be seen to be generated by the vector fields

ℓn ∶= −zn+1
∂

∂z
, n ∈ Z,

constituting a Lie algebra isomorphic to the Witt algebra Witt with commutation relations

[ℓn, ℓm] = (n −m)ℓn+m.

Note that ℓ−1 is the infinitesimal generator of translations, ℓ0 of scalings, and ℓ1 of special
conformal transformations. The Lie subalgebra generated by {ℓ−1, ℓ0, ℓ1} is isomorphism to the
Lie algebra sl(2,C) of the Möbius group PSL(2,C) of global conformal transformations on Ĉ.

In quantized systems, the symmetry groups and algebras often are central extensions of their
classical counterparts. In particular, in conformally invariant quantum field theory (i.e., CFT),
the conformal symmetry algebra is the unique central extension of the Witt algebra by the
one-dimensional abelian Lie algebra C: namely the Virasoro algebra Vir. (The central part of
Vir represents a conformal anomaly, giving rise to a projective representation of Witt — see,
e.g. [Sch08, Sections 3-4] for details.) Vir is the infinite-dimensional Lie algebra generated2 by
Ln, for n ∈ Z, together with a central element C, with commutation relations

⎧⎪⎪⎨⎪⎪⎩

[Ln,Lm] = (n −m)Ln+m + 1
12n(n

2 − 1)δn,−mC, for n,m ∈ Z,
[Ln,C] = 0.

Algebraically, the basic objects in a CFT, the conformal fields, can be regarded as elements
in representations of the symmetry algebra Vir, where the central element acts as a constant
multiple of the identity, C = c id. The number c ∈ C is called the central charge of the CFT.

1Of specific interest to us will be CFT in the domain H with boundary ∂H = R, where the global conformal
transformations are also Möbius maps, f ∈ PSL(2,R).

2We will use the same notation Vir also for the universal enveloping algebra of the Virasoro algebra.
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1.4 Primary fields and Verma modules

Primary fields are fields whose correlation functions also have a covariance property also under
local conformal transformations, in an “infinitesimal” sense, see [Sch08, Chapter 9]. Other fields3

are called descendant fields, obtained from the primary fields by action of the Virasoro algebra.

The rough idea is the following. It is postulated that a primary field ϕι(z) of conformal
weight ∆ι generates a highest-weight module Vc,∆ι of the Virasoro algebra of weight ∆ι and
central charge c. In physics, it is called the conformal family of ϕι(z), consisting of linear
combinations of the descendant fields of ϕι(z). The latter are obtained from ϕι(z) via action of
the Virasoro algebra. Here the space-time point z ∈ Ĉ plays no role yet. Algebraically, we could
identify ϕι(z) with a highest-weight vector as defined below:

ϕι(z) with weight ∆ι ⇐⇒ vc,h with weight h =∆ι.

We use the algebraic notation from the right-hand side when discussing representations of Vir,
and the analytical notation from the left-hand side when discussing fields in a CFT.

A Vir-module V is a highest-weight module if

V =Vir vc,h,

where vc,h ∈ V is a highest-weight vector of weight h ∈ C and central charge c ∈ C, that is, a
vector satisfying

L0vc,h = hvc,h, Lnvc,h = 0, for n ≥ 1, and Cvc,h = cvc,h.

In particular, for any pair (c, h), there exists a unique (up to isomorphism) Verma module

Mc,h =Vir/Ic,h

where Ic,h is the left ideal generated by the elements L0−h1, C−c1, and Ln, for n ≥ 1. The Verma
module Mc,h is a highest-weight module generated by a highest-weight vector vc,h of weight h and
central charge c (given by the equivalence class of the unit 1). It has a Poincaré-Birkhoff-Witt
type basis given by the action of the Virasoro generators with negative index,

{L−n1 ⋯ L−nk
vc,h ∣ n1 ≥ ⋯ ≥ nk > 0, k ∈ Z≥0}

ordered by applying the commutation relations. The Verma modules Mc,h are universal in the
sense that if V is any Vir-module containing a highest-weight vector v of weight h and central
charge c, then there exists a canonical homomorphism φ ∶ Mc,h → V such that φ(vc,h) = v. In
other words, any highest-weight Vir-module is isomorphic to a quotient of some Verma module.

1.5 Descendant fields and BPZ PDEs

Suppose that the primary field ϕι(z) is given. In general, its descendants have the form

Ψ(z) = L−n1 ⋯ L−nk
ϕι(z), where n1 ≥ ⋯ ≥ nk > 0 and k ≥ 1.

Their correlation functions are formally determined from the correlation functions of ϕι(z) using
linear differential operators which arise from the generators of the Virasoro algebra (this is quite
complicated — see, e.g., [Mus10, Chapter 10]): for any primary fields {ϕιi(zi) ∣ 1 ≤ i ≤ n},

⟨ϕι1(z1) ⋯ ϕιn(zn) L−kϕι(z)⟩
(⋆)= L(z)−k ⟨ϕι1(z1) ⋯ ϕιn(zn)ϕι(z)⟩,

3There is also the special field called stress-energy tensor, that we won’t discuss here.
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where

L(z)−k ∶=
n

∑
i=1
((k − 1)∆ιi

(zi − z)k
− 1

(zi − z)k−1
∂

∂zi
) , for k ∈ Z>0. (1.1)

Here, the identity (⋆) should be thought of as a “black box”, that is heuristically argued in
the physics literature [Mus10, Chapter 10] via the “infinitesimal conformal symmetry” of the
space-time, and can be a posteriori rigorously verified in some cases, such as for the Liouville
theory [KRV19]. One can extend the property (⋆) also to any (descendant) field Ψ(z):

⟨ϕι1(z1) ⋯ ϕιn(zn) L−kΨ(z)⟩
(⋆)= L(z)−k ⟨ϕι1(z1) ⋯ ϕιn(zn)Ψ(z)⟩.

Upshot. The conclusion from here is that the linear differential operators (1.1) relate the
purely algebraic content in CFT, encoded in representations of the Virasoro algebra Vir, to its
analytical content that includes the dependence of the space-time variables z1, . . . , zn, z ∈Wn+1.

Now, let’s consider the Vir-module Vc,∆ι generated by the primary field ϕι(z) with weight
∆ι. We know that it is must be quotient of a Verma module by some submodule Jι:

Vc,∆ι ≅Mc,∆ι/Jι.

Of course, the quotient structure needs to be determined from some information about ϕι(z).
We could have Jι = {0} or Jι = Mc,∆ι , in which case there’s nothing to quotient by. However,
in certain special cases we have a non-trivial quotient, which results in interesting information
about correlations of ϕι(z) with other fields. (See Section 1.6 for classification of those cases.)

Suppose that the conformal weight ∆ι = hr,s belongs to the special class (1.5) discussed
below, and denote ϕι ∶= ϕr,s accordingly. Then, by Theorem 1.1 (stated in the next Section 1.6),
the Verma module Mc,hr,s contains a so-called singular vector (defined below)

v = P (L−1,L−2, . . .)vc,hr,s ∈ Mc,hr,s

at level rs, where P is a polynomial in the generators of the Virasoro algebra.

Suppose furthermore that4 this vector is contained in Jr,s:

v = P (L−1,L−2, . . .)vc,hr,s ∈ Jr,s. (1.2)

Then, its equivalence class in the quotient module is zero:

[v] = 0 ∈ Mc,hr,s/Jr,s ≅ Vc,hr,s . (1.3)

In other words, the descendant field

P (L−1,L−2, . . .)ϕr,s(z) = 0

corresponding to the singular vector v is zero, a “null-field”. In this case, we say that ϕr,s(z) has
a degeneracy at level rs. In particular, correlation functions containing the field ϕr,s(z) then
satisfy partial differential equations (known as “null-field equations”) given by the polynomial

P (L(z)−1 ,L
(z)
−2 , . . .)

and the differential operators (1.1):

0 = ⟨ϕι1(z1)⋯ϕιn(zn)P (L−1,L−2, . . .)ϕr,s(z)⟩ [by (1.3, 1.2)]
(⋆)= P (L(z)−1 ,L

(z)
−2 , . . .) ⟨ϕι1(z1)⋯ϕιn(zn)ϕr,s(z)⟩ [by “black box” (⋆)]

Upshot. For the correlation function with ϕι(z) = ϕr,s(z), we see that from certain linear
relations on the Virasoro module side, we obtain the following (perfectly well-defined) partial
differential equation (called BPZ PDE) on the correlation function side:

Fι1,...,ιn,ι ∶ Wn+1 → C, P (L(z)−1 ,L
(z)
−2 , . . .) Fι1,...,ιn,ι(z1, . . . , zn, z) = 0. (1.4)

4This is the case, e.g., when Vc,hr,s is irreducible.
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1.6 Structure of Verma modules and singular vectors for Vir

Let us summarize here some facts concerning the representation theory of the Virasoro algebra
Vir. In general, submodules of Verma modules were classified by Fĕıgin & Fuchs [FF84, IK11].

▷ A vector v ∈Mc,h ∖ {0} is said to be singular at level ℓ ∈ Z>0 if it satisfies

L0v = (h + ℓ)v and Lnv = 0, for n ≥ 1.

▷ Each Verma module Mc,h has a unique maximal proper submodule, and the quotient of
Mc,h by this submodule is the unique irreducible highest-weight Vir-module of weight h
and central charge c. (This is analogous to the classical theory of Lie algebras.)

▷ Every non-trivial submodule of a Verma module Mc,h is generated by some singular vectors.

▷ The L0-eigenvalue of a basis vector v = L−n1 ⋯ L−nk
vc,h ∈Mc,h can be calculated using the

commutation relations:

L0v = (h +
k

∑
i=1
ni)v = (h + ℓ)v.

The number ℓ ∶= ∑ki=1 ni is called the level of the vector v.

In particular, Fĕıgin and Fuchs found a characterization for the existence of singular vectors
and thus for the irreducibility of Mc,h. Indeed, the Verma module Mc,h is irreducible if and only
if it contains no singular vectors. On the other hand, Mc,h contains singular vectors precisely
when the numbers (c, h) belong to a special class:

Theorem 1.1. [FF84, Proposition 1.1 & Theorem 1.2] The following are equivalent:

1. The Verma module Mc,h contains a singular vector.

2. There exist r, s ∈ Z>0, and θ ∈ C ∖ {0} such that

⎧⎪⎪⎨⎪⎪⎩

h = hr,s(θ) ∶= (r
2−1)
4 θ + (s

2−1)
4 θ−1 + (1−rs)2 ,

c = c(θ) = 13 − 6(θ + θ−1).
(1.5)

In this case, the smallest such ℓ = rs is the lowest level at which a singular vector occurs in Mc,h.

The special conformal weights hr,s are the roots of the Kac determinant [Kac79, Kac80],
often called Kac conformal weights. The notation hr,s for them is very common historically.

▷ L−1vc,h is a singular vector at level one if and only if h = h1,1 = 0.

▷ As a more involved example, let us make an ansatz

v = (L−2 + aL2
−1)vc,h (1.6)

for a singular vector at level two, with some a ∈ C. Then, we must have

a = − 3

2(2h + 1)
, h = 1

16
(5 − c ±

√
(c − 1)(c − 25)),

which equals h1,2 or h2,1 depending on the choice of sign.
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In general, explicit expressions for singular vectors are hard to find — one has to construct
a suitable (complicated) polynomial P so that the vector v = P (L−1,L−2, . . .)vc,h is singular.
Remarkably, in the case when either r = 1 or s = 1, Benôit and Saint-Aubin found a family of
such vectors [BSA88]: for r = 1 and s ∈ Z>0, the singular vector at level ℓ = s has the formula

s

∑
k=1

∑
n1,...,nk≥1
n1+⋯+nk=s

(−θ)k−s (s − 1)!2

∏k−1j=1 (∑
j
i=1 ni)(∑

k
i=j+1 ni)

× L−n1⋯L−nk
vc,h1,s .

The case s = 1 and r ∈ Z>0 is obtained by taking θ ↦ θ−1. Later, Bauer, Di Francesco, Itzykson,
and Zuber found the general singular vectors via a fusion procedure [BFIZ91].

1.7 Examples of BPZ PDEs

Singular vectors give rise to kind of degeneracies in CFT — null-fields whose correlation functions
solve BPZ PDEs (1.4) obtained from the Virasoro generators.

▷ From the singular vector at level one, one obtains the null-field L−1ϕ1,1(z), whose correlation
functions Fι1,...,ιn,ι(z1, . . . , zn, z) ∶= ⟨ϕι1(z1)⋯ϕιn(zn)ϕ1,1(z)⟩ satisfy the PDE

0 = L(z)−1 Fι1,...,ιn,ι(z1, . . . , zn, z) = −
n

∑
i=1

∂

∂zi
Fι1,...,ιn,ι(z1, . . . , zn, z).

Assuming that the correlation function F is translation invariant, we can replace ∑ni=1 ∂
∂zi

by the single derivative − ∂
∂z , so

∂

∂z
Fι1,...,ιn,ι(z1, . . . , zn, z) = 0,

i.e., the correlation function is constant in the variable z corresponding to ϕ1,1(z).

▷ More interestingly, for the level two singular vectors (1.6), the corresponding null-fields are

(L−2 −
3

2(2h1,2 + 1)
L2
−1)ϕ1,2(z),

(L−2 −
3

2(2h2,1 + 1)
L2
−1)ϕ2,1(z).

In the former case, the correlation functions Fι1,...,ιn,ι(z1, . . . , zn, z) ∶= ⟨ϕι1(z1) ⋯ ϕιn(zn)ϕ1,2(z)⟩
satisfy the second order PDE

⎡⎢⎢⎢⎢⎣
− 3

2(2h1,2 + 1)
(
n

∑
i=1

∂

∂zi
)
2

−
n

∑
i=1
( 1

zi − z
∂

∂zi
− ∆ιi

(zi − z)2
)
⎤⎥⎥⎥⎥⎦
Fι1,...,ιn,ι(z1, . . . , zn, z) = 0,

where ∆ιi are the conformal weights of the fields ϕιi , for 1 ≤ i ≤ n. Assuming again
translation invariance, this PDE simplifies to

[ 3

2(2h1,2 + 1)
∂2

∂z2
−

n

∑
i=1
( 1

zi − z
∂

∂zi
− ∆ιi

(zi − z)2
)]Fι1,...,ιn,ι(z1, . . . , zn, z) = 0. (1.7)

Using the parameterization θ = κ/4, we have c = (3κ−8)(6−κ)2κ and h1,2 = 6−κ
2κ . Then, the

PDE (1.7) is the same as we will see in SLE(κ) theory.
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Figure 2.1: A configuration of the critical Ising model on a square with 8 alternating boundary
segments with fixed spin “+” (yellow) or “−” (black). One can see 4 macroscopic interfaces be-
tween the fixed boundary points where the boundary conditions change. (Figure from [PW19].)

2 Random geometric observables in CFT

The content of the Pascal Institute lectures begins here.

2.1 Interfaces in critical lattice models (Ising example)

For concreteness let us consider the spin Ising model, which describes a magnet with a param-
agnetic (disordered) and a ferromagnetic (ordered) phase. See, e.g., the lecture notes [DCS12].
While the model could be defined on any graph, we are interested in 2D systems. For simplicity,
let us consider the model on subsets of the square lattice Z2 (re-scaled by small δ > 0).

Fix a bounded simply connected domain D ⊊ C of the complex plane. Let G = (V,E) be the
a finite graph with vertices V = D ∩ δZ2 and edges E given by the nearest-neighbor pairs. A
configuration in the (ferromagnetic) Ising model consists of an assignment σ ∶ V → {±1} of spins
σx ∈ {±1} to each vertex x ∈ V . The probability of a configuration σ is given by the Boltzmann
distribution (the canonical ensemble, or Gibbs measure)

P[σ] = e
−βH(σ)

Z
, H(σ) = − ∑

(x,y)∈E
σxσy, Z = ∑

σ

e−βH(σ),

where β = 1
T > 0 is the inverse-temperature and H(σ) is the Hamiltonian (giving the interaction).

The behavior of the system is highly dependent on the temperature: there is an order-
disorder phase transition at a unique5 critical temperature βc = 1

Tc
∈ (0,∞). At the critical

temperature, the scaling limit of the Ising model is believed (and in many ways proved) to become
conformally invariant in the scaling limit [Pol70, BPZ84b] (e.g., its interfaces and correlation
functions converge to conformally invariant or covariant quantities [HS13, CHI15, CDCH+14,
Izy17, BPW21, CHI21]). We will only consider the Ising model at its critical temperature.

To study the geometry of the Ising model, one can study interfaces between “+” spins and “−”
spins. Some of these interfaces are macroscopic, so they survive in the scaling limit. For example,
one can force the system to have a macroscopic interface via imposing boundary conditions. We
split the boundary ∂D = ∂+ ⊔ ∂− into two segments ∂+ and ∂−, and consider the Ising model
with the constraint that the vertices in ∂+ all equal +1 and the vertices in ∂− all equal −1.

5The precise value of the critical temperature depends on the chosen graph. For Z2 it is βc =
1
2
log(1 +

√
2).
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Then for topological reasons, there must exist6 a macroscopic path traversing between “+”
and “−” spins and connecting the two boundary points where the segments ∂+ and ∂− touch.
Of course, one could generalize this to include several alternating “+” and “−” boundary segments,
and obtain several (interacting) interfaces. In the scaling limit δ → 0, such interfaces have been
proven to converge to random conformally invariant curves [CDCH+14, Izy17, BPW21], called
Schramm-Loewner evolution (SLE(3)) curves, that we will discuss shortly.

2.2 Ising CFT — (4,3) minimal model

Let us briefly discuss correlations of the spins σx at vertices x ∈ V and the energy operators
ε(x,y) ∶= σxσy at edges (x, y) ∈ E. It is a major achievement in this area that (multi-point)
correlation functions of these random variables converge to conformally covariant quantities
that satisfy all the properties predicted for the Ising model CFT [HS13, CHI15, CHI21]. Such
random variables should in the scaling limit correspond to CFT fields, whose nature however
remains partly unclear: while the spin field σ can be realized as a random distribution [CGN15],
it seems that the energy field ε cannot be realized in that way [GK25]. Since we will not focus
on this, we refer to the above literature for more details on the mathematical results.

Let us however make a connection with the theoretical physics literature (e.g. [DFMS97]).
As was already understood in the 1980s, the observables {σ, ε,1} in the Ising model correspond
with the three CFT primary fields in the (4,3)-minimal model. This model carries the Virasoro
symmetry, and its states can be regarded as elements in the Vir ×Vir-module

(M1/16 ⊗M1/16) ⊕ (M1/2 ⊗M1/2) ⊕ (M0 ⊗M0),

where7 each Mh (resp. M h̄) is a (simple) highest weight Vir-module of weight h (resp. Vir-
module of weight h̄) and central charge c = 1/2. In particular, the Ising minimal model CFT
is diagonal and unitary. For the Vir-structure related to the Ising model at the lattice level,
see [HJVK22]. For its scaling limit, see [CHI21] (to my understanding, the authors are working
on a preprint verifying the Virasoro structure as well).

As a simple example, the two-point function (in the full plane D = C) reads

δ−1/4(E[σxσy] −E[σx]E[σy])
δ→0Ð→ ∣y − x∣−1/4,

δ−2(E[(ε(x,x+δ) − 1√
2
) (ε(y,y+δ) − 1√

2
)]) δ→0Ð→ ∣y − x∣−2,

where in the powers we can recognize the conformal weights 1/4 = 2hσ + 2h̄σ of the spin field σ
(with hσ = h̄σ = 1/16) and 2 = 2hε+2h̄ε of the energy field ε(x,x+δ) ∶= σxσx+δ (with hε = h̄ε = 1/2).
Let us also record here the fusion rules in the (4,3) minimal model for possible later reference:

1 ⊠ 1 = 1, 1 ⊠ σ = σ, 1 ⊠ ε = ε,
σ ⊠ σ = 1 ⊞ ε, σ ⊠ ε = σ, ε ⊠ ε = 1.

2.3 So, are we done understanding the Ising CFT?

We will see that this is not the end of the story... For example, looking at crossing probabilities
in the Ising model, given by an analogue of Cardy’s formula, we see that the corresponding
correlation functions go outside of the minimal model. (In fact, they present logarithmic features,
hinting that the appropriate CFT for the interface observables is a log-CFT.)

6There are also loops in the interior of the domain, separating “+” spins and “−” spins. They have been shown
to converge to the so-called conformal loop ensemble (CLE(3)) [BH19], a kind of multi-loop version of SLE.

7The one with weight h = 0 is the trivial module M0 ≅ C that corresponds to the identity field 1.
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3 What is SLE?

Schramm-Loewner evolutions (SLE), originally called “stochastic” Loewner evolutions, were in-
troduced by Schramm [Sch00], who argued that they are the only possible random curves that
could describe scaling limits of critical lattice interfaces in 2D systems. Schramm’s definition
was inspired by the classical theory of Loewner [Loe23] for dynamical description of shrinking
domains, encoded in conformal maps. Schramm’s revolutionary input was that such maps could
also be random. One of the first celebrated applications of SLE was the rigorous calculation of
critical exponents [LSW01a, LSW01b, SW01, LSW02], in agreement with the earlier predictions
in the physics literature [dN83, BPZ84a, BPZ84b, Car84, DF84, DS87, Nie87].

For the basic theory, see the book [Kem17] which also contains the necessary background
in stochastic and complex analysis to understand the SLE theory (for mathematicians). For a
geometric perspective, see the monograph [Fri04]. See [Car05, BB06] for lectures targeted to
theoretical physicists. Here, we try to focus on the intuitive definition and properties.

Figure 3.1: Illustration of the Loewner maps gt ∶ H ∖ η[0, t] → H for the SLE(κ) curve η. The
image of the tip η(t) of the curve is the driving process Wt =

√
κBt. (Figure from [Pel19].)

3.1 Schramm-Loewner evolution

Precisely speaking, for κ ≥ 0, the (chordal) Schramm-Loewner evolution SLE(κ) is a family
of conformally invariant probability measures PD;x,y on curves, indexed by simply connected
domains D ⊊ C with two distinct boundary points x, y ∈ ∂D. Each measure8 PD;x,y is supported
on continuous unparameterized curves in D from x to y. By conformal invariance, we can
consider the upper half-plane D = H ∶= {z ∈ C ∣ Im(z) > 0} as the reference domain (we pick a
representative in the moduli space, and we assume the Euclidean metric), and x = 0 and y = ∞.

Concretely, SLE(κ) curves can be generated dynamically using random Loewner evolutions.
This uses some complex analysis and PDE theory, but the idea is simple; see Figure 3.1. In its
construction as a growth process, the time evolution of the curve η ∶ [0,∞) → D is encoded in
a collection (gt)t≥0 of conformal maps z ↦ gt(z), which solve an ordinary differential equation9

in time (Loewner equation):

∂tgt(z) =
2

gt(z) −Wt
, g0(z) = z, z ∈ H, (LE)

where t ↦ Wt is a real-valued continuous function, called the driving function. To construct
SLE(κ), we take Wt =

√
κBt, where (Bt)t≥0 is one-dimensional Brownian motion, that is, a

8One can uniquely characterize such a one-parameter family of measures PD;x,y by conformal invariance and
a domain Markov property, which together imply that the Loewner driving function of such a curve must be a
constant multiple of one-dimensional Brownian motion. This was proved by Schramm [Sch00].

9For each z ∈ H, this equation is only well-defined up to a blow-up time sup{t > 0 ∣ infs∈[0,t] ∣gs(z) −Ws∣ > 0},
called the swallowing time of z. Geometrically, at the swallowing time of a point z the curve either hits the point
or forms a bubble around it, disconnecting it from infinity, which results in the time-evolution of that point under
the Loewner map gt to stop. When the speed is small enough, κ ∈ [0,4], bubbling does not happen almost surely.
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random function B ∶ [0,∞) → R describing the time-evolution of the tip of the curve, as in
Figure 3.1, with B0 = 0. The map z ↦ gt(z) is the unique conformal bijection from H ∖ η[0, t]
onto H with normalization chosen as lim

z→∞
∣gt(z) − z∣ = 0. See [RS05] for the original reference.

Figure 3.2: Simulations of SLE(κ) curves with different values of κ but the same realization of
the driving Brownian motion. (Figure from [Kem17].)

The diffusivity parameter (speed) κ ≥ 0 determines the geometry of the SLE curve (almost
surely); see Figure 3.2. For example, when 0 ≤ κ ≤ 4, the SLE(κ) curve is simple; when 4 < κ < 8,
the SLE(κ) curve is not simple, nor space-filling; and when κ ≥ 8, the SLE(κ) curve is space-
filling [RS05]. For the purposes of our discussion, we assume throughout that κ ≤ 4.

For later reference (to talk about multiple SLE measures later), we let

X 0(D;x, y)

denote the set of continuous simple unparameterized curves in D connecting distinct x ∈ ∂D
and y ∈ ∂D such that they only touch the boundary in {x, y}. This is the set where the chordal
SLE(κ) curves live in our case10 — that is, when κ ≤ 4 the SLE(κ) probability measure PD;x,y

is supported on X 0(D;x, y). This (non-compact) space is usually endowed with the metric

dX (η, η̃) ∶= inf
ψ,ψ̃

sup
t∈[0,1]

∣η(ψ(t)) − η̃(ψ̃(t))∣,

where η, η̃ ∶ [0,1] →D are representatives of curves, and the infimum is taken over all reparam-
eterizations, that is, increasing bijections ψ, ψ̃ ∶ [0,1] → [0,1].

3.2 Conformal anomaly

The SLE(κ) curve model is a conformally invariant model. Moreover, it is closely related to CFT
— and in fact, as we will see, the interaction of SLE(κ) curves can be encoded in correlation
functions of certain primary fields. But where is the central charge and the Vir-action?

10Here we also need the reversibility property of chordal SLE: the SLE(κ) curve from x to y has the same
distribution as the SLE(κ) curve from y to x. This property is very non-trivial to prove [Zha08].
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The anomaly11 can be detected by chopping off a subset A ⊂D from our domain and looking
how the probability measure of the SLE(κ) curve changes. Let us consider concretely a setup
where D = D and D∖A =∶ U is simply connected and contains the endpoints x, y ∈ ∂U ∩∂D of the
curve. Let fA ∶ D∖A→ D be the unique conformal bijection such that fA(x) = x and fA(y) = y.

In measure-theoretic terms, chordal SLE(κ) measure in (U ;x, y) is absolutely continuous
with respect to chordal SLE(κ) measure in (D;x, y), with Radon-Nikodym derivative given by

dPU ;x,y

dPD;x,y (η) = 1|{η ∩A = ∅}
exp ( c2 µ

loop
D (η,A))

∣f ′A(x)∣h1,2 ∣f ′A(y)∣h1,2
, U = D ∖A, (3.1)

where 1|{η ∩A = ∅} is the indicator function on the space of curves for the event {η ∩ A = ∅}
that the curve avoids the set A, i.e.,

1|{η ∩A = ∅} =
⎧⎪⎪⎨⎪⎪⎩

0, η ∩A ≠ ∅,
1, η ∩A = ∅,

and where µloopD (η,A) is a conformal invariant, to be discussed shortly, and

c = c(κ) = (3κ − 8)(6 − κ)
2κ

is the central charge of the corresponding CFT, also written in the more familiar form (1.5):

c = 13 − 6(θ + θ−1), θ = κ
4
,

and h1,2 is a conformal weight in the Kac table (1.5):

h1,2 = h1,2(κ) =
6 − κ
2κ

.

Recall from the representation theory of Vir (Theorem 1.1 in Section 1) that the Verma module
with central charge c and conformal weight h possesses nontrivial submodules if and only if h
belongs to the Kac table:

hr,s =
(r2 − 1)

4
θ + (s

2 − 1)
4

θ−1 + (1 − rs)
2

, θ = κ
4
,

for r, s ∈ N. (Of course, the formula makes sense for more general r, s and we will use it below.)

The conformally invariant object µloopD (η,A) can be written in terms of the Brownian loop
measure µloopD introduced by Lawler, Schramm & Werner [LSW03, LW04], which is an infinite
measure on collections of 2D Brownian motion loops in D. We denote by µloopD (η,A) the measure
of those Brownian loops in D that intersect both sets η and A. It can be proven to be finite
when A ∩ η = ∅. A potentially more intuitive formula can be written as12

µloopD (η,A) = log(
detζ(∆int(A)) detζ(∆D∖(η∪A))

detζ(∆D)
) = log(

detζ(∆D∖A) detζ(∆D∖η)
detζ(∆D) detζ(∆(D∖A)∖η))

)

where ∆V is the Laplace-Beltrami operator on the domain V with Dirichlet boundary conditions,
and detζ is its ζ-regularized determinant. A caveat here is that the right-hand side formula is
only guaranteed to be finite when A ∩ η = ∅ and both ∂A and η are smooth enough. (But
SLE(κ) curves are not smooth at all — they are fractal with non-trivial Hausdorff dimension.)

11In fact, one should view this as a conformal change of metric, which gives rise to the Weyl anomaly.
12Note that the domain D ∖ η has two components, and the Laplacian determinant is understood just as the

product of the ones in each component. Similarly for int(A) if it has several components.
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To see the conformal anomaly in (3.1) in terms of a change of metric, taking D = D with the
flat metric g0, the above heuristic formula becomes

µloopD (η,D ∖U) = log(
detζ(∆U,g0) detζ(∆D∖η,g0)
detζ(∆D,g0) detζ(∆U∖η,g0)

)

= log(
detζ(∆D,∣(f−1A )′∣2g0

) detζ(∆D∖η,g0)
detζ(∆D,g0) detζ(∆D∖f−1A (η)),∣(f

−1
A )′∣2g0

)
), U = D ∖A,

where the uniformizing map fA ∶ U → D pulls back the flat metric from D to U as ∣(f−1A )′∣2g0.

Let us remark that on a domain D with metric g and smooth boundary (above, we have
been using the flat metric and omitted it from the notation),

(
det ζ(∆D,g)

exp ( 1
4π ∫∂Σ kgṽolg)

)
−c/2

= Zg(D)

can be seen as a partition function (with c = 1, arguably of the free boson). Any CFT partition
function on surface Σ transforms as

Ze2σg(Σ) = ecS(σ,g)Zg(Σ)

where two metrics g and e2σg in the same conformal class are related by the anomaly functional

S(σ,g) ∶= 1

12π
∬

Σ
(1
2
∣∇gσ∣2g +Rgσ)volg +

1

12π
∫
∂Σ
kgσ ṽolg, σ ∈ C∞(Σ,R),

where ∇g, Rg, volg, kg, ṽolg are respectively the divergence, Gaussian curvature, and volume
form on Σ, and the boundary curvature and volume form on ∂Σ, induced by g. For the Laplacian
determinant, this is related to Polyakov-Alvarez conformal anomaly formula [Pol81, Alv83].

3.3 Comments of the radial case

Let us also briefly mention another SLE interesting variant here. Radial SLE(κ) is a curve
growing from a boundary point, say 1 ∈ ∂D ∶= {z ∈ C ∣ ∣z∣ = 1}, to an interior point, say
0 ∈ D ∶= {z ∈ C ∣ ∣z∣ < 1}, in a simply connected domain, say D. It can be generated by using a
radial version of Loewner equation (which we will not need).

Consider A ⊂ D such that D ∖A =∶ U is simply connected and contains the endpoints 0 and
1 of the curve. Let fA ∶ D ∖A → D be the unique conformal bijection such that fA(0) = 0 and
fA(1) = 1. Then, radial SLE(κ) measure in D ∖ A from 1 to 0 is absolutely continuous with
respect to radial SLE(κ) measure in D from 1 to 0, with Radon-Nikodym derivative given by

dPD∖A;1,0

dPD;1,0 (η) = 1|{η ∩A = ∅}
exp ( c2 µ

loop
D (η,A))

∣f ′A(0)∣
2h0,1/2 ∣f ′A(1)∣h1,2

,

where

h0,1/2 = h0,1/2(κ) =
(6 − κ)(κ − 2)

16κ
.

The fact that the weight at the interior point is 2h0,1/2 is because it is a bulk field, whereas the
boundary endpoints are boundary fields, which could also be regarded as chiral fields.

Note that this is consistent with the predictions from loop models and corresponds to an
electric vertex operator at the origin. One can also add a magnetic charge, which results in
spiraling behavior for the curve around the origin. See [HPW25] and references therein.
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Figure 3.3: Illustration for the semiclassical limit of 3-radial spiraling SLE. (Figure by Mo Chen.)

Interestingly enough, if one takes the limit where the interior endpoint of the curve tends to
the boundary, one recovers the above chordal case — perhaps surprisingly, this also holds with
the magnetic charge and multiple curves. Namely, if we consider n curves started at boundary
points x1, . . . , xn ∈ ∂D and growing towards the origin, the associated conformal block is that
involving the familiar fields ϕ1,2(x1), . . . , ϕ1,2(xn) and a bulk field at the origin of weights (h, h̄),

h = h0,n/2 −
µ2

4κ
− i µ

2κ
n, h̄ = h0,n/2 −

µ2

4κ
+ i µ

2κ
n,

where µ ∈ R is the spiraling rate. Somewhat mysteriously, in the limit where the interior endpoint
tends to the boundary, the associated bulk field (which has nonzero spin and is nondegenerate)
becomes a boundary field of weight h1,n+1 (which is degenerate at level n + 1) [HPW25].

4 Correlation functions

In this section, we will consider a collection of chordal/boundary conformal blocks {Zα}α related
to the SLE(κ) curve model. For κ ∈ (0,8] they are linearly independent functions that span
a space of solutions to the level two BPZ equations, and could thus be regarded as conformal
blocks of the fields ϕ1,2. One could also compute fusion rules of these conformal blocks, and
see that one gets the complete first row of the Kac table. See [Pel19, FLPW24] and references
therein. In particular, these blocks are beyond the Kac table! (In fact, at rational values of κ,
they also reveal logarithmic behavior; the easiest example being κ = 8 with c = −2 [LPW24].)

From these chiral blocks, one can use the crossing symmetry idea, common in the classical
CFT literature [DF85, DFMS97] to construct single-valued bulk correlation functions in a diag-
onal theory. This has been only partly written up, but the program is explained in [Pel16]. The
proof relies on a hidden quantum group symmetry and quantum Schur-Weyl duality developed
in [KP16, KP20, FP20, Pel20, FP]. (See citations therein for background references.)

4.1 Back to critical interfaces

Let D ⊊ C be a simply connected domain with 2N distinct marked points x1, x2, . . . , x2N ∈ ∂D
appearing in counterclockwise order along the boundary. Like discussed earlier, by imposing
alternating “+” and “−” boundary conditions to the Ising model changing at each insertion xj ,
we see a family of interacting chordal interfaces γδ = (γδ1 , . . . , γδN) in the model. These interfaces
converge [Smi10, CDCH+14, Izy15, BPW21] in the scaling limit δ → 0 to the multiple (chordal)
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N -SLE(κ) with κ = 3, discussed below. (We noted earlier that the parameter κ = 3 matches
with the central charge c = 1/2, and it is the only such κ that gives a simple curve.)

These curves can have various planar connectivities that we label by planar link patterns

α = {{a1, b1}, . . . ,{aN , bN}} ∈ LPN , (4.1)

where {a1, b1, . . . , aN , bN} = {1,2, . . . ,2N}. Note that for each fixed N ∈ N, the total number of
planar link patterns is the Catalan number CN = 1

N+1(
2N
N
) =#LPN .

We proved in [PW23] in general that the following convergence holds:

lim
δ→0

Pδ[ interfaces (γδ1 , . . . , γδN) form connectivity α ] = Zα(D;x1, . . . , x2N)
∑β∈LPN

Zβ(D;x1, . . . , x2N)
, (4.2)

where {Zα ∣ α ∈ LPN} are the “pure partition functions” of multiple chordal SLE(κ) with κ = 3, to
be discussed shortly. Here, the denominator is just a normalization factor that makes the sum of
all probabilities 1 (though in other models, it becomes much more interesting [LPW24, FPW24].)

In the first nontrivial case of N = 2, the crossing formula (4.2) was predicted in [ASA02], and
it is an analogue of Cardy’s formula [Car92] for critical Bernoulli percolation: the pure partition
functions in this case are given by

Z (H;x1, x2, x3, x4) =
2Γ(4/3)

Γ(8/3)Γ(5/3)
((x2 − x1)(x4 − x3)
(x4 − x2)(x3 − x1)

)
2/3

2F1(43 ,−
1
3 ,

8
3 ;
(x2−x1)(x4−x3)
(x4−x2)(x3−x1))

(x4 − x1)(x3 − x2)
,

Z (H;x1, x2, x3, x4) =
2Γ(4/3)

Γ(8/3)Γ(5/3)
((x4 − x1)(x3 − x2)
(x4 − x2)(x3 − x1)

)
2/3

2F1(43 ,−
1
3 ,

8
3 ;
(x4−x1)(x3−x2)
(x4−x2)(x3−x1))

(x2 − x1)(x4 − x3)
,

for x1 < x2 < x3 < x4, where = {{1,2},{3,4}} and = {{1,4},{2,3}} are the two
possible link patterns. These formulas and certain other special cases appear in [BBK05, Izy15]
(and also in the PhD thesis of Izyurov, who proved the convergence in the N = 2 case). In
general, explicit formulas for the probability amplitudes Zα are not known when κ = 3.

Let us now compare this with the Ising minimal CFT. The conformal weight h1,2 apprearing
in the conformal anomaly formula reads

h1,2 =
1

2
(κ = 3),

which we recognize as the weight of the energy field ε. Take x1 = 0, x2 = z, x3 = 1, x4 = ∞. Then
we have

Z (z) = 2Γ(4/3)
Γ(5/3)Γ(8/3)

z2/3(1 − z)−1 2F1( 4κ ,1 −
4
κ ,

8
κ ; z),

Z (z) = 2Γ(4/3)
Γ(5/3)Γ(8/3)

(1 − z)2/3z−1 2F1( 4κ ,1 −
4
κ ,

8
κ ; 1 − z),

and

Z (z) + Z (z) = z
2 − z + 1
z(1 − z)

= z2/3(1 − z)2/3 I2(z),

where I2(z) = ⟨ε(0) ε(z) ε(1) ε(∞)⟩ is the minimal model chiral conformal block appearing in the
classical CFT literature [DF85, DFMS97]. We see that it decomposes further into two functions,
which could be viewed as chiral conformal blocks in a larger theory.
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4.2 Multiple interacting SLE curves

In the continuum model, we consider curves γ = (γ1, . . . , γN) in D each of which connects
two points among {x1, x2, . . . , x2N}. Let us assume that κ ∈ (0,4], so that the SLE(κ) curves
are simple. For each link pattern α ∈ LPN , let Xα(D;x1, . . . , x2N) denote the set of families
γ = (γ1, . . . , γN) of pairwise disjoint curves such that γj ∈ X 0(D;xaj , xbj) for all j ∈ {1,2, . . . ,N}.

For N ≥ 2 and α ∈ LPN , we define a (chordal) N -SLE(κ) associated to α as the unique
probability measure on the curve families γ ∈ Xα(D;x1, . . . , x2N) with the following “resam-
pling” property: For each j ∈ {1,2, . . . ,N}, the conditional distribution of the curve γj given
{γ1, γ2, . . . , γN}∖{γj} is the chordal SLE(κ) connecting xaj and xbj in the connected component
of the domain D ∖ ⋃

i≠j
γi containing the endpoints xaj and xbj of γj on its boundary.

Multichordal SLE(κ) is a family of SLE(κ) curves with interaction. Looking at Figure 2.1
depicting the Ising interfaces, the idea becomes clear: If one discovers part of the model, then the
remaining model is just a similar model with fewer curves. The defining property of N -SLE(κ)
also implies that for any subset J ⊊ {1,2, . . . ,N}, the conditional distribution of the curves
(γj)j∈J given {(γj)j∉J} is the appropriate multichordal SLE(κ) (in a potentially disconnected
domain, but we can obviously define the random curves in each component separately).

The resampling property can be understood in terms of the conformal anomaly. Indeed,
suppose we discovered the curves {γ2, γ3, . . . , γN} — meaning we condition on them in the
multiple SLE(κ) probability measure. Then, with D = H as before, the appropriate component
of the domain H ∖ {γ2, γ3, . . . , γN} containing the endpoints xa1 and xb1 of γ1 on its boundary
can be viewed as H∖A, where A is formed by the components chopped off by the other curves.

With this idea in mind, multichordal SLE(κ) with central charge c = c(κ) can be constructed
as follows [Law09]. Let Pκα denote the product measure of N independent chordal SLE(κ) curves
associated to the link pattern α. Denote by Eκα the expectation with respect to Pκα. The N -
SLE(κ) probability measure Pκα on Xα(D;x1, . . . , x2N) can be obtained by weighting Pκα with
the Radon-Nikodym derivative13 (which is a measurable map on the curve space)

Rκα(γ) =
dPκα
dPκα
(γ) ∶=

1|{γi ∩ γj = ∅ ∀i ≠ j} exp ( c2 mD(γ))

Eκα[1|{γi ∩ γj = ∅ ∀i ≠ j} exp ( c2 mD(γ))]
, (4.3)

where mD(γ) is expressed in terms of the Brownian loop measure: mD(γ) ∶= 0 if N = 1, and

mD(γ) ∶=
N

∑
p=2

µloopD ({ℓ ∣ ℓ ∩ γi ≠ ∅ for at least p of the i ∈ {1, . . . ,N}}) if N ≥ 2.

One can prove that this is a conformally invariant quantity. See [Law09, PW19] for more details.

The pure partition functions of multiple SLE(κ) are defined in terms of the total mass of
the N -SLE(κ) measure (here, we use the labeling (4.1) of the curve endpoints):

Zα(D;x1, . . . , x2N) ∶= (
N

∏
j=1

HD(xaj , xbj))
h1,2

Eκα[1|{γi ∩ γj = ∅ ∀i ≠ j} exp ( c
2
mD(γ))], (4.4)

where HD(x, y) is the boundary Poisson kernel, that is, the unique conformally covariant func-
tion defined as

HD(x, y) ∶= ∣φ′(x)∣ ∣φ′(y)∣HH(φ(x), φ(y)), where HH(z,w) ∶= ∣w − z∣−2,

where φ ∶ D → H is any conformal map. Note that Zα(D;x1, . . . , x2N) is a function of the
boundary points x1, . . . , x2N and the domain D, as well as of the link pattern α. (In fact, in
general it should be a function of the associated conformal moduli in the problem.)

13The difference of 1/2 compared to [BPW21] is due to normalization conventions for Brownian loop measure.
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The motivation for this definition comes from considering chordal SLE(κ) as a unnormalized
(non-probability) measure on X 0(H;xaj , xbj), which has the correct conformal anomaly:

dPH∖A;xaj ,xbj

dPH;xaj ,xbj
(η) = 1|{γj ∩A = ∅}

exp ( c2 µ
loop
H (γj ,A))

∣f ′A(xaj)∣h1,2 ∣f ′A(xbj)∣h1,2
,

Indeed, using the definition of the Poisson kernel, we obtain

1|{γj ∩A = ∅}
exp ( c2 µ

loop
H (γj ,A))

∣f ′A(xaj)∣h1,2 ∣f ′A(xbj)∣h1,2

= 1|{γ ∩A = ∅} (
HH(xaj , xbj)
HH∖A(xaj , xbj)

)
h1,2

exp ( c
2
µloopH (γj ,A))

and rearranging this, we obtain

(HH∖A(xaj , xbj))
h1,2

dPH∖A;xaj ,xbj (γ) = (HH(xaj , xbj))
h1,2

exp ( c
2
µloopH (γj ,A)) dPH;xaj ,xbj (γ).

The total mass of the right-hand side appears as an ingredient in the construction of Zα. An
inclusion-exclusion argument gives the loop measure term mD(γ), see [Law09, PW19, BPW21].

4.3 Some heuristics on the SLE action functional

We can also write the Radon-Nikodym derivative (4.3) in the form

Rκα(γ) =
1|(γ) exp ( 1κ Φκ(γ))

Eκα[1|(γ) exp ( 1κ Φκ(γ))]
, Φκ(γ) ∶= κ

c(κ)
2

mD(γ),

writing 1|(γ) = 1|{γi ∩ γj = ∅ ∀i ≠ j} for the indicator function that the curves are disjoint.

This looks a sort of “Bolzmann measure on curves” — and one could think of the quantity
Φκ(γ) as an “action functional” for SLEs (though there are also other terms that it could include,
obtained from “Loewner energies” of the curves as well as terms involving the conformal moduli
of the problem, in this case, Poisson kernels as above; see [PW24, Eq. (1.4)].)

Note that κc(κ)
2 → −24 as κ → 0. In fact, in this semiclassical limit c(κ) → −∞, the measure

concentrates on “interacting geodesics” in the hyperbolic metric on D (see [PW24]), meaning
curve families η = (η1, . . . , ηN) having the following property inherited from the resampling:

For each j ∈ {1,2, . . . ,N}, the curve ηj is the hyperbolic geodesic14, that is, the chordal
SLE(0), between the points xaj , xbj in the connected component of D ∖⋃i≠j ηi containing ηj.

4.4 BPZ equations from SLE martingales

Bauer and Bernard observed [BB03, BBK05] that the time-evolution of an SLE(κ) curve gives
rise to the BPZ PDE at level two, using a martingale argument from probability theory15 that
we now sketch. (This was later elaborated especially by Dubédat [Dub07, Dub06, KP16].) The
rigorous arguments involve probability theory and analysis, but the conceptual idea is simple.

For us, let’s take as a black box the fact that by a standard result in probability theory
known as Girsanov’s theorem (see, e.g. [RY05, Chapter 8]) the change of measure

Rκα(γ) =
exp ( 1κ Φκ(γ))

Eκα[ exp ( 1κ Φκ(γ))]
, Φκ(γ) ∶= κ

c(κ)
2

mD(γ),

14A hyperbolic geodesic in (D;x, y) is the image of [−1,1] by a conformal map (D; 1,−1) → (D;x, y).
15Martingales are processes (Mt)t≥0 such that, given the history up to time t, the conditional expectation of

M observed at time s ≥ t equals the present value Mt. So in a sense, they don’t remember their past.
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is obtained by changing the measure of the Brownian motion B that appears in the Loewner
evolution (LE) of the SLE(κ) curve. In the language of stochastic analysis, the curves in a
multiple SLE(κ) can be described via a Loewner evolution similar to the usual chordal case (LE),
but where the Loewner driving process Wt (which for one curve was Brownian motion with speed
κ) has a drift given by the interaction with the other curves. We can recursively focus on growing
one curve at a time (marginal law), so that the endpoints of the other curves serve as spectator
points with respect to the evolution of the curve that we are growing at the time.

It turns out that one can also write the drift for the driving function in a quite convenient
form [Dub07]. On the upper half-plane H with marked points x1 < ⋯ < x2N , for the marginal
law of the curve starting from xj , with j ∈ {1, . . . ,2N}, we have the SDEs

⎧⎪⎪⎨⎪⎪⎩

dWt =
√
κ dBt + κ∂j logZα(gt(x1), . . . , gt(xj−1),Wt, gt(xj+1), . . . , gt(x2N)) dt,

dgt(xi) = 2 dt
gt(xi)−Wt

, for i ≠ j,
(4.5)

with initial conditions
⎧⎪⎪⎨⎪⎪⎩

W0 = xj ,
g0(xi) = xi, for i ≠ j.

From the point of view of Girsanov’s theorem, the drift (κ∂j logZα) dt arises from a martingale
that encodes the interaction (see [Dub07] for the derivation):

Mt = ∏
i≠j
∣g′t(xi)∣h1,2 ×Z(gt(x1), . . . , gt(xj−1),

√
κBt + xj , gt(xj+1), . . . , gt(x2N)),

where gt is the solution to the Loewner equation (LE) with driving function Wt =
√
κBt + xj .

It is straightforward to formally calculate the Itô (stochastic) differential of this martingale
using Itô’s formula (see e.g. [RW00, Theorem (32.8)]), the observation g′t(z) > 0, and the relations

dgt(z) =
2

gt(z) −Wt
dt and dg′t(z) = −

2g′t(z)
(gt(z) −Wt)2

dt,

which follow from the Loewner equation (LE). By the martingale property, the drift term in
the result should equal zero, which gives the following second order PDE (compare with (1.7)):

⎡⎢⎢⎢⎢⎣

κ

2

∂2

∂x2j
+∑
i≠j
( 2

xi − xj
∂

∂xi
−

2h1,2(κ)
(xi − xj)2

)
⎤⎥⎥⎥⎥⎦
Zα(x1, . . . , x2N) = 0. (4.6)

This equation holds symmetrically for all j ∈ {1, . . . ,2N} [Dub07], since it does not matter which
curve we start growing first, and it only involves studying the evolution at small times.

This is (almost) a rigorous derivation of the level two BPZ PDE for the multichordal SLE(κ)
system. What remains is to show that the function Zα is regular enough that one can complete
the argument involving stochastic differentiation. This can be done in at least two ways:

▷ Show that Zα is C2, and then one can apply Itô’s formula [JL18].

▷ Show that Zα is continuous, use this to argue that one gets a weak (distributional) solution
to (4.6), and then invoke the fact that the PDE is hypoelliptic to conclude that in fact, Zα
is also a strong solution, in particular smooth; see [Dub15] and [FLPW24, Appendix B].

One can generalize the above argument to include other marked points which have other
conformal weights, as in (1.7). What is important is that the point xj where the curve is
growing from corresponds to the Kac conformal weight h1,2.

The content of the Pascal Institute lectures ends here.
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5 Semiclassical limit

When κ is small, the SLE(κ) curves tend to be relatively straight, but still fractal — see
Figures 3.1 & 3.3. In the limit κ → 0, the SLE(κ) probability measure on the curve space
X 0(D;x, y) concentrates on an atomic measure supported on the hyperbolic geodesic connecting
the two endpoints of the curve — that is, the curve becomes the shortest path connecting its
endpoints. To formulate this precisely, probabilists talk about a large deviation principle (LDP).

5.1 Large deviation principle

Intuitively, for a given reference curve η in D connecting two boundary points x, y ∈ ∂D, when
the speed κ of the driving Brownian motion goes to zero, we expect a limiting behavior of type

“ P[SLE(κ) curve γ in (D;x, y) stays close to η] κ→ 0+≈ exp ( −
ID;x,y(η)

κ
) ”,

where ID;x,y is a conformally invariant quantity called Loewner energy of the curve η:

ID;x,y(η) ∶= IH;0,∞(φ(η)) ∶=
1

2
∫
∞

0
∣W ′(t)∣2 dt,

and where W is the Loewner driving function of the reference curve φ(η), that is the image of η
under any conformal map φ ∶ D → H sending x and y respectively to 0 and ∞. (The right-hand
side is just the Dirichlet energy of W .) The Loewner energy of a chord is not always finite.

Similarly, for multiple curves, taking a reference curve family η = (η1, . . . , ηN), we have

“ P[N -SLE(κ) curves γ in (D;x1, . . . , x2N) stay close to η] κ→ 0+≈ exp ( −
ID;x1,...,x2N (η)

κ
) ”,

where this also depends on the connectivity pattern α of the curves as in (4.1), and where

ID;x1,...,x2N (η) ∶= (
N

∑
j=1

ID;xaj ,xbj
(ηj) + 12mD(η)) −min

ζ∈Xα

(
N

∑
j=1

ID;xaj ,xbj
(ζj) + 12mD(ζ)) ∈ [0,+∞]

is the associated Loewner energy. See [PW24] for the mathematical formulation.

5.2 Semiclassical limit of the partition/correlation functions

Let us study the κ→ 0 limit of the pure partition functions (4.4),

Zα(D;x1, . . . , x2N) ∶= (
N

∏
j=1

HD(xaj , xbj))
h1,2

Eκα[1|{γi ∩ γj = ∅ ∀i ≠ j} exp (c(κ)
2

mD(γ))].

Recall that they can be thought of as conformal blocks for degenerate fields of type ϕ1,2. Since
c(κ) → −∞ as κ→ 0, this is a semiclassical limit for the theory.

Because the quantity mD(γ) is positive (it cannot equal zero as the curves are macroscopic),
we see that for any realization of the random curves γ, the exponential vanishes in the limit:

exp (c(κ)
2

mD(γ))
κ→0Ð→ 0.

This does not mean, however, that the limit curves would be non-interacting: as remarked before,
the measure of the curves concentrates on “interacting geodesics” in the hyperbolic metric on D.

The limit of the function Zα includes interesting geometric information. In fact, we proved
in [PW24] that (this can be regarded as a special case of the Zamolodchikov conjecture [Zam86])

−κ logZα(D;x1, . . . , x2N)
κ→0Ð→ Uα(D;x1, . . . , x2N),
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where Uα can be thought of as a semiclassical conformal block and has the formula

Uα(D;x1, . . . , x2N) = min
ζ∈Xα

(
N

∑
j=1

ID;xaj ,xbj
(ζj) + 12mD(ζ)) + 3

N

∑
j=1

HD(xaj , xbj).

Moreover, as might not be very surprising, Uα satisfies the semiclassical BPZ equations

1

2
(∂j Uα(x1, . . . , x2N))2 −∑

i≠j

2

xi − xj
∂i Uα(x1, . . . , x2N) = ∑

i≠j

6

(xi − xj)2
,

for all j ∈ {1, . . . ,2N}. Heuristically, plugging the expression Zα = exp(− 1
κUα) into the BPZ

PDE system (4.6) gives exactly the above equation as κ → 0. (The difficulty is to prove that
one can exchange the limit and derivative, which we obtain as a byproduct of the LDP result
for the SLE curves.) In the physics literature, this appears as a system of Hamilton-Jacobi
type equations (also related to Painlevé VI) associated to the semiclassical conformal blocks,
see [LLNZ14] and references therein. A semiclassical limit of the dual version of these PDEs
(associated to the dual fields of conformal weight h2,1 in the Liouville CFT of central charge
c ≥ 25) have been used to give a probabilistic proof for the Takhtajan-Zograf theorem [TZ03]
relating Poincaré’s accessory parameters to the classical Liouville action [LRV22].

For a relation of the curve endpoints to classical integrable Calogero-Moser type systems,
see [ABKM24, AHP24].
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