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Abstract

In planar random geometry, a plethora of conformally invariant and covariant objects
has been emerged in the recent years. Among these particularly fruitful have been random
fractal curves derived from one-dimensional Brownian motion: Schramm-Loewner evolutions
(SLE), conformal loop ensembles (CLE), and their variants. Originally they were introduced
in the context of critical models in statistical physics to understand conformal invariance
and critical phenomena. Such curves describe scaling limits of lattice interfaces, and level
and flow lines of random fields, but have also turned out to be quite interesting by their own
right. In these lectures, I will introduce models for conformally invariant random curves and
discuss their relation to critical models and some geometric properties.

As general references to random planar curves, see for example Werner’s Saint-Flour
lecture notes [Wer03], or for more details, the relatively recent book by Kemppainen [Kem17]
or the Cambridge lecture notes [BN16] by Berestycki & Norris (especially for probabilists).

A symmetric random walk on a 200 × 200 square grid and its loop-erasure (red). The erased loops are gray.
(Figure from [KKP19].)
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Figure 1.1: Illustration of the phase transition of the Ising model. In high temperatures (right),
the system is disordered, whereas in low temperatures (left), aligned spins are favored. At
criticality, macroscopic clusters of aligned spins appear. The phase transition is continuous in
the sense that the magnetization is continuous across the transition at Tc. (Figure from [Pel16].)

1 Introduction: Critical models in statistical physics

▷ In statistical physics one studies macroscopic systems consisting of many microscopic ran-
dom objects. The idea is that the number of objects tends to infinity, which is formulated
as a “scaling limit”. One wishes in particular to capture universal properties that survive
in the scaling limit, regardless of the microscopic setup of the model.

▷ For example, Donsker’s theorem states that symmetric random walk converges, when suit-
ably rescaled, to Brownian motion (see [MP10, Chapter 5]). This in fact holds quite uni-
versally: regardless of the precise microscopic formulation of the random walk, assuming
that the distribution of jumps is nice enough.

▷ Donsker’s theorem holds for any space dimension. For dimension two, a theorem of Lévy
(see [MP10, Theorem 7.20]) states that the limiting object (2D Brownian motion) is con-
formally invariant in distribution (up to a time change) — in particular, its trajectory is a
random conformally invariant set in the plane.

Example: Ising model. Conformal invariance is a fundamental property of many models in
statistical physics, such as critical Ising model, critical Bernoulli percolation, and other critical
models with second order phase transition — see the lecture notes [DCS12] by Duminil-Copin
& Smirnov for a detailed account. A prototypical example of a statistical physics model with
a continuous (second order) phase transition is the two-dimensional ferromagnetic (nearest-
neighbor) Ising model (with fixed positive coupling constant). On a finite graph G = (V,E) with
vertices V and edges E, a configuration in the Ising model consists of an assignment σ ∶ V → {±1}
of spins σx ∈ {±1} to each vertex x ∈ V . The probability of a configuration σ is given by the
Boltzmann distribution (the canonical ensemble)

P[σ] = e
−βH(σ)

Z
, H(σ) = − ∑

(x,y)∈E
σxσy, Z = ∑

σ

e−βH(σ),

where β = 1
T > 0 is the inverse-temperature and H(σ) is the Hamiltonian. The Boltzmann

distribution favors configurations where the neighboring spins are aligned. The behavior of the
system is also highly dependent on the temperature: there is an order-disorder phase transition
at a unique critical temperature βc = 1

Tc
∈ (0,∞). At the critical temperature, the scaling limit

of the Ising model is believed (and in may ways proved) to become conformally invariant in the
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Figure 1.2: Critical Ising model configurations on a square lattice with alternating boundary
conditions (that is, some boundary segments have spins equal to +1 and the other segments have
spins equal to −1). Interfaces connecting boundary points are highlighted. (Figure from [Pel19].)

scaling limit (e.g., its interfaces and correlation functions converge to conformally invariant or
covariant quantities [HS13, CHI15, CDCH+14, Izy17, BPW21]).

To study the geometry of the critical Ising model, one can study interfaces between “+” spins
and “−” spins. Some of these interfaces are macroscopic, so they survive in the scaling limit.
For example, one can force the system to have a macroscopic interface via imposing boundary
conditions: take G =Dδ =D ∩ δZ2 for some bounded simply connected domain D ⊊ C, split the
boundary ∂D = ∂+ ⊔ ∂− into two segments ∂+ and ∂−, and consider the Ising model with the
constraint that the vertices in ∂+ all equal +1 and the vertices in ∂− all equal −1. (See Figure 1.2.)
Then for topological reasons, there must exist a macroscopic path traversing between “+” and
“−” spins and connecting the two boundary points where the segments ∂+ and ∂− touch. (More
generally, one could consider alternating boundary conditions with more “+” and “−” segments
on the boundary. In that case, there are several macroscopic boundary-to-boundary interfaces
as in Figure 1.2(right).) At the critical temperature T = Tc, the interfaces have interesting
self-similar behavior. Indeed, in the scaling limit δ → 0, such interfaces have been proven to
converge to random conformally invariant curves, called Schramm-Loewner evolution (SLE(3))
curves [CDCH+14, Izy17, BPW21]. Also, loops (domain walls) in the interior of the domain
separating “+” spins and “−” spins have been shown to converge to the so-called conformal loop
ensemble (CLE(3)) [BH19].

To motivate how one could describe scaling limits of critical Ising interfaces, there are a few
natural properties that the limit should satisfy. In addition to conformal invariance (predicted
via renormalization group methods), one would expect a Markovian property (which holds for
many lattice models with local interactions) in the following sense.

Consider the Ising model on G as above, with its boundary divided into the two segments
∂+ and ∂−. An exploration process on G, started from one of the boundary points where the
segments ∂+ and ∂− touch and ending at the other such boundary point, is defined by following
the interface between the opposite spins step by step1. Let γ(k), for k = 0,1, . . . , n, denote this
exploration process (in discrete time). Explore it up to some time k0. Consider the exploration
process γ̃ for the model on the smaller grid G̃ = G ∖ γ[0, k0], started from the tip γ(k0), where
the boundary conditions are taken as before on ∂G and naturally continued to both sides of the
segment γ[0, k0] of ∂G̃. Then, the distribution of the exploration process γ̃ associated to the

1A careful reader may notice a caveat (that becomes clear by drawing a small figure on the square grid):
on the square grid, one might encounter an indetermination for the exploration step, which can be resolved by
picking a preferred choice for the direction of each exploration step.
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model on the grid G̃ equals the conditional law of the original process γ on the original graph
G given the initial segment γ[0, k0]. This is called the (domain) Markov property.

2 Conformal invariance of 2D Brownian motion

To convey the conceptual ideas of conformal invariance, we will usually consider nice enough
planar domains D ⊊ C. For example, we could assume that the boundary ∂D is a smooth
Jordan curve. (Most of the results we will state hold much more generally, but one has to be
careful with what happens on the boundary.) A well-known occurrence of conformal invariance
for planar objects is the observation that harmonic functions are preserved by conformal maps
(Proposition 2.3). From this, one gets to conformal invariance of the Brownian trajectory, or
more precisely, the Brownian hull (Proposition 2.6).

2.1 Conformal maps

▷ We say that a map φ ∶ D → D̃ is conformal (biholomorphic) if it is holomorphic and
bijective. Note that, at any point z0 ∈D, a conformal map has a Taylor expansion with the
form

φ(z) = φ(z0) + φ′(z0) (z − z0) +⋯.

Intuitively, one can think of the first term as a translation by φ(z0), and the second term as a
rotation by the argument of φ′(z0) together with a scaling by the modulus ∣φ′(z0)∣. Thus, up
to terms of order ∣z−z0∣2, the conformal map φ is a composition of a translation, a rotation,
and a scaling. One sometimes says that a conformal map is locally angle-preserving.

▷ Recall also that a holomorphic map φ satisfies the Cauchy-Riemann equations: writing
z = x + iy and φ(z) = u(z) + iv(z), we have ∂xu = ∂yv and ∂xv = −∂yu.

▷ We denote by D ∶= {z ∈ C ∣ ∣z∣ < 1} the open unit disc in the complex plane C. It is
a standard example of a simply connected domain, that is, a non-empty open connected
planar set (domain) which has no holes (i.e., having trivial fundamental group). In fact,
all simply connected domains are conformally equivalent to either D (see Theorem 2.1), or
C. (More generally, among simply connected Riemann surfaces we should also include the
Riemann sphere Ĉ ∶= C ∪ {∞}.)

Theorem 2.1 (Riemann mapping theorem). Let D ⊊ C be a simply connected domain. Then,
there exists a conformal map φ ∶ D → D. This map is uniquely determined by fixing three degrees
of freedom, for instance:

▷ picking some point z0 ∈D and requiring that φ(z0) = 0 and φ′(z0) > 0; or

▷ picking three points a, b, c ∈ ∂D and three points a′, b′, c′ ∈ ∂D, both in counterclockwise
order, and requiring that φ(a) = a′, φ(b) = b′, and φ(c) = c′. (This is possible when the
boundary ∂D is nice enough so that the map φ is defined at the points a, b, c ∈ ∂D.)

Proof idea. This is a standard result in complex analysis. There are many proofs for the exis-
tence, see for example [Ahl79]. The uniqueness follows by classifying all conformal self-maps of
the unit disc D, which is a three-dimensional real Lie group.

2.2 Dirichlet problem and conformal invariance

▷ Recall that the Laplacian operator in Rn is defined as ∆ = ∂21 + ∂22 + ⋯ + ∂2n. When n = 2,
we identify R2 with the complex plane C, writing z = x + iy ∈ C with (x, y) ∈ R2, so that
∆ = ∂2x + ∂2y .
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▷ We say that a map f ∶ D → R is harmonic in D ⊂ C if ∆f(z) = 0 for all z ∈D.

▷ Real and imaginary parts of holomorphic maps give examples of harmonic functions.

Theorem 2.2 (Dirichlet problem). Let D be a bounded simply connected domain whose boundary
∂D is a smooth Jordan curve. Let u ∶ ∂D → R be a continuous function. Then, there exists a
unique function f ∶ D → R which is continuous in D, harmonic in D, and has u as its boundary
values: f(x) = u(x) for all x ∈ ∂D.

Proof idea. This is a well-known fact in potential theory, that can be found in many books. For
example, see [MP10, Theorem 3.12] for a statement involving Brownian motion.

Remarkably, harmonic functions in the plane are conformally invariant in the following sense.

Proposition 2.3 (Conformal invariance of Dirichlet problem). Let φ ∶ D̃ → D be a conformal
map and f the harmonic function on D with boundary values u. Then f ○ φ is the harmonic
function on D̃ with boundary values u ○ φ.

Proof idea. Given f , one can calculate f ○ φ and use the Cauchy-Riemann equations that the
conformal map φ has to satisfy to deduce that ∆f = 0 implies ∆(f ○ φ) = 0.

2.3 2D Brownian motion and conformal invariance

There are numerous books concerning Brownian motion. For an extensive reference, see [MP10].
Recall that one-dimensional Brownian motion started at a point B0 = x ∈ R is a continuous-time
real-valued stochastic process B = (Bt)t≥0 satisfying the following properties (that determine it
uniquely):

▷ (Independent increments): For any partition 0 ≤ t0 < t1 < t2 < ⋯ < tn, the increments
{Btj+1 −Btj ∣ j = 0,1, . . . , n − 1} are independent random variables.

▷ (Stationary, Gaussian increments): For each 0 ≤ s < t, the increment Bt − Bs has the
Gaussian distribution: Bt −Bs ∼ N(0, t − s), that only depends on the time difference.

▷ (Continuous sample paths): The map t↦ Bt is continuous almost surely.

Definition 2.4. Two-dimensional (2D) Brownian motion started at a point B0 = z = x+ iy ∈ C
is a continuous-time real-valued stochastic process B = (Bt)t≥0 whose real and imaginary parts
(B(1),B(2)) are independent one-dimensional Brownian motions started at (B(1)0 ,B

(2)
0 ) = (x, y):

Bt = B(1)t + iB
(2)
t , t ≥ 0.

We denote by Ez the expected value with respect to the law Pz of 2D Brownian motion started
at z.

The Laplacian operator ∆ is the generator of Brownian motion as a Markov process. In par-
ticular, it is natural to expect that the conformal invariance of Dirichlet problem yields conformal
invariance for 2D Brownian motion. This is indeed the case, but one has to make a time change
to account for the different speeds of the Brownian motion in different domains. To prove this,
one can use stochastic analysis and the Cauchy-Riemann equations — for details, see [Kem17,
Chapter 2.5] or [BN16, Chapter 2.1], or [MP10, Theorem 7.20]. We will instead consider the
trajectory of the 2D Brownian path, which is a random planar set (see Proposition 2.6).

In fact, the Dirichlet problem can be solved using 2D Brownian motion.
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Proposition 2.5 (Kakutani’s formula). Let D be a bounded simply connected domain whose
boundary ∂D is a smooth Jordan curve. Let u ∶ ∂D → R be a continuous function. Consider 2D
Brownian motion B on D started at z ∈D up to the exit time

τD ∶= inf{t ≥ 0 ∣ Bt ∉D} = inf{t ≥ 0 ∣ Bt ∈ ∂D}.

The function z ↦ Ez[u(BτD)] solves the Dirichlet problem in D with boundary values u.

Proof idea. This can be proven, e.g., by using Itô calculus — see [BN16, Chapter 2] for a detailed
proof (and [MP10, Theorem 3.12] for a quite general statement).

One way to determine the law of a random compact subset K ⊂ D (that is, to define
a probability distribution for it), is to let the law of K be determined by the collection of
probabilities that K doesn’t intersect an obstacle A:

{P[K ∩A = ∅] ∣ A ⊂D compact such that D ∖A is simply connected}.

One can check that the sigma-field generated by the events {K ∩A = ∅} as above coincides with
the Borel sigma-field induced by the Hausdorff metric on the space of closed subsets of D. See
the lecture notes [Wer05] for more discussion on this approach.

Intuitively, the filling (or hull) fillD(B) = fill(B[0,τD]) of 2D Brownian motion on D is the
random fractal set obtained by looking at the trajectory of the Brownian motion from outside,
that is, by filling all the loops in the bounded components of the complement of B[0,τD] in C.
The filling is conformally invariant in distribution in the following sense.

Proposition 2.6 (Conformal invariance of Brownian hull). Let φ ∶ D̃ →D be a conformal map
and B̃ and B respectively Brownian motions on D̃ and D started at z ∈ D̃ and φ(z) ∈D. Then

fillD(B) and fillD(φ ○ B̃)

have the same law as random subsets of D (as above).

Proof idea. The idea to prove this is related to “conformal restriction” [LSW03, Vir03]. Note
that for any obstacle A, we have

P[fillD(B) ∩A = ∅] = Pφ(z)[B exits D before it hits A]
= Pφ(z)[B exits D ∖A through ∂D ∖ ∂A]
= Eφ(z)[1|{BτD∖A ∈ ∂D ∖ ∂A}].

Define

f ∶ w ↦ Ew[1|{BτD∖A ∈ ∂D ∖ ∂A}], w ∈D ∖A,

which is, by Kakutani’s formula (Proposition 2.5), the harmonic measure on D ∖ A of the set
∂D∖∂A, that is, the unique harmonic function in D∖A that has boundary values 1 at ∂D∖∂A,
and 0 at D∩∂A. We know from the conformal invariance of Dirichlet problem that this function
is conformally invariant. More precisely, define Ã = φ−1(A) and

f̃ ∶ z ↦ Ez[1|{B̃τD̃∖Ã ∈ ∂D̃ ∖ ∂Ã}], z ∈ D̃ ∖ Ã,

which is the harmonic measure on D̃ ∖ Ã of the set ∂D̃ ∖ ∂Ã. Then, applying Proposition 2.3 to
the conformal map φ restricted to the set D̃∖ Ã, we see that f ○φ = f̃ , which gives the assertion:

P[fillD(B) ∩A = ∅] = Eφ(z)[1|{BτD∖A ∈ ∂D ∖ ∂A}]
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= f(φ(z)) = f̃(z)
= Ez[1|{B̃τD̃∖Ã ∈ ∂D̃ ∖ ∂Ã}]
= Pz[B̃ exits D̃ ∖ Ã through ∂D̃ ∖ ∂Ã]
= Pz[B̃ exits D̃ before it hits Ã]
= P[fillD(φ ○ B̃) ∩A = ∅].

Remark 2.7. fillD(B) is a random fractal set, whose outer boundary has Hausdorff dimension
4/3 (this property, known as Mandelbrot conjecture, was proven using by SLE in [LSW01]).

3 Conformal invariance emerging for discrete models

It is quite difficult to study the geometry of random planar sets that have double points. Even
worse, the trajectory of Brownian motion has points of arbitrary multiplicity. Hence, it would be
meaningful to first study simple (that is, injective) planar curve models that exhibit conformal
invariance. We will next consider simple curves obtained from random walk, whose scaling limits
should be simple conformally invariant curves.

3.1 Simple curves from random walk

Consider the symmetric random walk X on Z2, say. To get a simple path from X, one can:

▷ either make X simple by erasing all loops from it (LERW, see Section 3),

▷ or condition X to be a simple (self-avoiding) path (SAW, see Section 5).

The SAW model in the plane has turned out to be extremely difficult to study rigorously,
being very far from a Markov process. The LERW model was originally introduced as a toy
model for SAW (by Greg Lawler in his PhD thesis; see [Law16] for relatively recent notes), but
in two and three dimensions, it actually belongs to a different universality class (that is, its
scaling limit has different macroscopic properties, such as Hausdorff dimension) than SAW. In
dimensions five and higher, these models coincide in the scaling limit with that of the symmetric
random walk (Brownian motion), roughly because there is so much space that the self-avoidance
constraint becomes redundant in sufficiently high spatial dimension2. Let us now focus on the
LERW model in the plane.

▷ A walk on Z2 started at a given point x0 ∈ Z2 is a nearest-neighbor path x = (x0, x1, . . . , xm)
of vertices of Z2, or equivalently, comprising edges ({x0, x1},{x1, x2}, . . . ,{xm−1, xm}) of Z2.

▷ The loop-erasure LE(x) of a walk x is obtained from it by chronologically erasing all loops:

LE(x)0 ∶= x0, LE(x)k+1 ∶= xnk+1, k ≥ 0,

where nk ∶=max{n ≤m ∣ xn = LE(x)k}. Note that the number of steps in LE(x) can vary.

▷ If X is a symmetric random walk X on Z2, then its loop-erasure L ∶= LE(X) is a random
walk on Z2, called loop-erased random walk (LERW).

2It is also believed that in dimension four, both LERW and SAW converge to Brownian motion, but only the
case of LERW has been proven rigorously (by Lawler). In dimension three, very little is known of SAW, while it
is known that LERW has a scaling limit [Koz07], that has still not been characterized very precisely.

8



We consider LERWs of finite length living in a (simply connected) discrete domain G =D∩Z2

started at some fixed point x0 =X0 = L0. Denote the exit time of the walk from G as

τ = τG ∶= inf{m ∈ N ∣Xm ∉ G}.

The loop-erasure up to time τ is the simple discrete path L = LE((Xk)0≤k≤τ). We write σ for
the length of L, so that Lσ = Xτ ∈ ∂G. Note that σ is a random stopping time (for the natural
filtration generated by the walk). The distribution of the exit point Xτ on ∂G is the same
as that for the LERW Lσ. This is just the discrete harmonic measure, that converges (under
suitable regularity conditions) to the harmonic measure, i.e., the distribution of the exit point
of Brownian motion from D. This, in turn, is closely related to Dirichlet problem and thus
it would be natural to expect that, analogously to the Brownian hull, the scaling limit of the
LERW path would be conformally invariant. This is indeed the case (see Theorem 4.9).

3.2 Markov property for LERW

In addition to conformal invariance, another natural property is helpful in determining the scaling
limit of LERW — the (domain) Markov property. This property is apparent for exploration
processes of interfaces in critical statistical physics models, such as the critical Ising model and
critical percolation, while for the LERW it’s not completely obvious (see Proposition 3.1).

It is convenient to condition the walk upon exiting at a given y0 = Lσ = Xτ ∈ ∂G, which we
will assume throughout. We say that the LERW in G is started from x0 and ending at y0.

Proposition 3.1 (Markov property). Fix y0 ∈ ∂G and y1, . . . , yk ∈ G which are possible last
steps of L = (L0, L1, . . . , Lσ). Then, the conditional law of (L0, L1, . . . , Lσ−k−1) on the event

{Lσ = y0, Lσ−1 = y1, . . . , Lσ−k = yk}

is LERW in the discrete slit domain G ∖ {y1, . . . , yk} started from x0 and ending at yk.

Proof idea. For a vertex z and a set A, the Green’s function G(z,A) = Gx0(z,A) is defined as
the expected number of visits of random walk to z (started at x0) before hitting A:

G(z,A) =
ιA−1
∑
j=0

P[Xj = z],

where ιA ∶= inf{j ∈ N ∣Xj ∈ A} is the hitting time of A. One can check that, for vertices w0 = x0,
w1,w2, . . . ,wσ−1, and wσ = y0, the following identity holds:

P [L = (w0,w1, . . . ,wσ−1,wσ)]
= ∑

x=(x0,x1,...,xm) ∶
LE(x)=(w0,w1,...,wσ)

P[X = (x0, x1, . . . , xm)]

= G(w0, ∂G) × P[step w0 → w1] × G(w1, ∂G ∪ {w0}) × P[step w1 → w2] × ⋯×
×⋯ × G(wσ−1, ∂G ∪ {w0,w1, . . . ,wσ−2}) × P[step wσ−1 → wσ].

Next, note that the product of Green functions

σ−1
∏
j=0
G(wj , ∂G ∪ {w0,w1, . . . ,wj−1})

is symmetric under permutations of the points (w0,w1, . . . ,wσ−1). This follows by the property

G(z,A)G(z′,A ∪ {z}) = G(z′,A)G(z,A ∪ {z′}),
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Figure 3.1: Comparison of the loop-erasures when a small loop (of size ε) is erased (left) and
when the small loop is not erased (right). The resulting loop-erasures (highlighted red) are quite
different.

that is, making loops at z and then making loops at z′ without going back to z is the same as
making loops at z′ and then making loops at z without going back to z′. This gives the claim
with k = 1: given y0 and y1, the conditional law is

P[L = (w0,w1, . . . ,wσ−1,wσ) ∣ Lσ = y0, Lσ−1 = y1]

= G(y1, ∂G) × P[step y1 → y0]
P[Lσ = y0, Lσ−1 = y1]

×
σ−2
∏
j=0
(G(wj , (∂G ∪ {y1}) ∪ {w0,w1, . . . ,wj−1}) × P[step wj → wj+1])

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
LERW in slit domain G ∖ {y1}

,

where wσ−1 = y1, and where ∂G ∪ {y1} is the boundary of the slit domain G ∖ {y1} with one
point y1 removed. This gives the claim for k = 1, and one can iterate to get the claim for general
k ≥ 2. The details are left as an exercise.

3.3 Scaling limit of LERW: heuristics

Consider LERW γδ in Dδ =D ∩ δZ2 started from xδ0 and ending at yδ0 ∈ ∂Dδ, where xδ0 → x0 ∈D
and yδ0 → y0 ∈ ∂D as δ → 0. We wish to describe the limit of γδ as δ → 0. From Donsker’s
theorem we know that the underlying random walk converges to 2D Brownian motion. Hence,
we would expect that LERW converges to the loop-erasure of Brownian motion. However, there
is no obvious loop-erasure procedure for Brownian motion3:

▷ The probability that Brownian motion visits any given point is zero.

▷ Brownian motion has points of arbitrary multiplicity.

▷ There is no well-defined “first” loop, and loops occur at all scales.

▷ Trying to re-normalize changes the geometry of the obtained loop-erasure: if we wish to
erase loops of size larger than some given ε, then the loop-erasure can depend drastically
on ε. See Figure 3.1.

Anyway, since the loop-erasure is a purely geometric property, we would expect that if LERW
has a scaling limit, it satisfies conformal invariance. (One can also argue that the limit object
must be a simple curve by ruling out “almost” loops, see [Sch00].)

Conformal invariance. Since we expect conformal invariance, it should be sufficient to look
at the model in the discretization Dδ = D ∩ δZ2 of the unit disc D. The LERW lives in Dδ and
goes from 0 to 1, and we can view it backwards as a simple curve from 1 to 0 as in the Markov
property (Proposition 3.1). We thus consider simple curves γ = γD;1,0 ∶ [0,∞) → D (with some
parameterization to be determined) such that γ(0) = 1 ∈ ∂D and lim

t→∞
γ(t) =∶ γ(∞) = 0.

For each time t, the Riemann mapping theorem (Theorem 2.1) shows that there exists a
unique conformal map ft ∶ D ∖ γ[0, t] → D such that ft(0) = 0 and ft(γ(t)) = 1.

3There is a paper [Zha11] (that appeared later than [LSW04]) showing that one can indeed define a loop-
erasure, using a coupling technique, and such a loop-erasure applied to 2D Brownian motion indeed yields SLE(2).
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Lemma 3.2. The map t↦ ∣f ′t(0)∣ is increasing and continuous on [0,∞), and satisfies

lim
t→∞
∣f ′t(0)∣ = ∞.

Proof idea. This can be proven using Schwarz lemma, which is a basic and very useful tool in
complex analysis (see, e.g. [BN16, Lemma 1.2]).

Since f0 = idD, from Lemma 3.2 we see that we can parameterize time as t = log ∣f ′t(0)∣, i.e.,

∣f ′t(0)∣ = et.

Hence, to each realization of the curve γ ∶ [0,∞) → D, we can associate a unique collection
(ft)t≥0 of conformal maps chosen as above.

Conformal invariance of the law of the curve γ states that we can determine the law in any
other simply connected domain D via a conformal map.

Definition 3.3 (Conformal invariance). For a random curve γD;y0,x0 in D from y0 ∈ ∂D to
x0 ∈ D, the law PD;y0,x0 of γD;y0,x0 is given by the pushforward φ∗ PD;1,0 of the law PD;1,0 of
γD;1,0 by the conformal map φ ∶ D→D sending 1 to y0 = φ(1) and 0 to x0 = φ(0).

Markov property. Given a segment γ[0, t], we would like to say that the conditional law of
the rest γ[t,∞) of the curve is similar to the original model but in the slit domain D ∖ γ[0, t].

▷ On the one hand, the Markov property of LERW (Proposition 3.1) suggests that the law
of γ[t,∞) should be the limit as δ → 0 of the (backward) LERW in Dδ ∖ γδ[0, t] from
γδ(t) to 0.

▷ On the other hand, the conformal invariance would imply that the models in D and D∖γ[0, t]
are related by the conformal map ft: the law of γ[t,∞) should be the same as the law of
the image f−1t (γ̃[0,∞)), where γ̃ ∼ γD;1,0 is an independent copy of γ in D from 1 to 0.

Hence, the curve γ should satisfy the following conformal Markov property :

Definition 3.4. The conditional law of γ[t,∞) given γ[0, t] under PD;1,0 is

▷ (Domain Markov property) the same as PD∖γ[0,t];γ(t),0,

▷ (Conformal Markov property) which is also the same as the pushforward law (f−1t )∗ PD;1,0.

Remark 3.5. In fact, one can think of generating γ by iteration of conformal maps. One can
check that (ft+s)s≥0 and (f̃s ○ ft)s≥0 have the same law (here f̃ is an independent copy of f),
since the derivatives of the maps at the origin just multiply upon composition (because the maps
preserve the origin). Hence, we morally have that, for fixed n ∈ N and t > 0, the map ft is a
composition of copies of f̃t/n. One can think of these as independent and stationary increments.

4 Loewner’s theorems and SLE(κ)

4.1 From curves to conformal maps

In the 1920s, Charles Loewner observed that any simple planar curve γ ∶ [0,∞) → D such
that γ(0) = 1 ∈ ∂D and lim

t→∞
γ(t) =∶ γ(∞) = 0 can be encoded in a one-dimensional function

ζ ∶ [0,∞) → S1 = ∂D, called a driving function. This is, in a sense, related to the winding of the
curve — or rather the conformal map ft. Namely, we can write

ζt =
∣f ′t(0)∣
f ′t(0)

.

11



Put differently, let gt ∶ D ∖ γ[0, t] → D be the unique conformal map such that gt(0) = 0 and
g′t(0) = et. Then

ζt = gt(γ(t)).

Theorem 4.1 (Loewner chain from simple curve). The maps (gt)t≥0 satisfy the initial value
problem

∂tgt(z) = −gt(z)
gt(z) + ζt
gt(z) − ζt

, g0(z) = z (LE)

for all z ∈ D, where the solution (gt(z))t∈[0,Tz) is defined up to the blow-up time (called swallowing
time of the point z)

Tz ∶= sup{t ≥ 0 ∣ lim inf
s↗t

∣gs(z) − ζs∣ > 0} ∈ [0,+∞]. (4.1)

In other words, the conformal maps gt are defined in D off the curve γ[0, t]. (One can also
consider a curve that has self-touchings, in which case the maps gt are defined in the connected
component of D∖ γ[0, t] containing the origin. Even more generally, one could consider “locally
growing” sets, see [Kem17, Chapter 4] for details.) The maps (gt)t≥0 are often referred to as a
Loewner chain, and the differential equation (LE) is called Loewner equation.

Proof idea. Consider first what happens at an infinitesimal time increment: one can show that

∂tgt(z)∣
t=0
= lim
t↘0

gt(z) − g0(z)
t

= lim
t↘0

gt(z) − z
t

= −z z + 1
z − 1

.

The heuristic idea is that, when t > 0 is very small, the curve segment γ[0, t] is very small, and
the conformal map gt collapsing γ[0, t] to the boundary and fixing the origin is related to a
vector field on the disc D that is

▷ zero at the origin (since the origin is fixed),

▷ has a pole at the boundary point 1 (since the tip γ(t) is close to 1),

▷ zero at the boundary point −1 (by symmetry),

▷ and is tangential to the boundary ∂D.

Making this rigorous is non-trivial — for the chordal case, a detailed proof is given in [Kem17,
Chapter 4.2.1]. (The radial case follows from the chordal case, and the latter is slightly easier.)

Note the following composition property for the conformal maps.

Lemma 4.2. The maps (gt)t≥0 have the following composition rule: writing for each fixed t ≥ 0

γ̃(t)(ε) = gt(γ[t, t + ε]), ε ≥ 0,

if (g̃(t)ε )ε≥0 are the maps associated to γ̃, then

gt+ε = g̃(t)ε ○ gt.

Proof idea. This follows from a computation: since the maps gt preserve the origin, the deriva-
tives of the maps at the origin just multiply upon composition, so the time-parameterization by
g′t(0) = et is preserved.
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To derive the asserted differential equation (LE), we can use the above lemma and the chain
rule. Indeed, for fixed t, using the chain rule and applying the above observation to g̃ gives

∂ε(gt+ε ○ g−1t )(z)∣
ε=0
= ∂εg̃(t)ε (z)∣

ε=0

= lim
ε↘0

g̃
(t)
ε (z) − g̃(t)0 (z)

ε
= lim
ε↘0

g̃
(t)
ε (z) − z

ε
= −z z + ζt

z − ζt
,

since when ε > 0 is very small, the conformal map g̃(t)ε collapsing γ̃(t)[0, ε] to the boundary and
fixing the origin is related to a vector field on the disc D that is

▷ zero at the origin (since the origin is fixed),

▷ has a pole at the boundary point ζt = gt(γ(t)) (since the tip γ̃(t)(ε) is close to ζt),

▷ zero at the boundary point −ζt (by symmetry),

▷ and is tangential to the boundary ∂D.

Finally, since

gt+ε = gt+ε ○ g−1t ○ gt,

using the chain rule again gives

∂tgt(z) = lim
ε→0

gt+ε(z) − gt(z)
ε

= −gt(z)
gt(z) + ζt
gt(z) − ζt

,

where ζt = gt(γ(t)).

4.2 From conformal maps to growing sets

Conversely, one can show that given a continuous function ζ ∶ [0,∞) → S1, Loewner’s initial
value problem (LE) for fixed z ∈ D has a unique solution, which is a conformal map from a
subset of D onto D, defined off of some compact set Kt ⊂ called a hull.

Theorem 4.3 (Loewner chain from driving function). Let ζ ∶ [0,∞) → S1 be a continuous
function such that ζ0 = 1. Then for each z ∈ D, the initial value problem (LE) has a unique
solution (gt(z))t∈[0,Tz) defined up to the blow-up time (4.1). Moreover, for each t ≥ 0, the map
z ↦ gt(z) is a conformal map from D ∖Kt onto D, where

Kt = {z ∈ D ∣ Tz ≤ t}.

Proof idea. The existence and uniqueness of the solution follows from standard ODE theory
(Picard-Lindelöf, or Cauchy-Lipschitz theorem). To show that z ↦ gt(z) is a conformal map,
we need to argue that:

1. z ↦ gt(z) is holomorphic on D ∖Kt,

2. z ↦ gt(z) is injective on D ∖Kt,

3. and gt(D ∖Kt) = D.

From the differential equation (LE) one can derive a differential equation

∂tg
′
t(z) = −g′t(z)

(gt(z))2 − 2 ζt gt(z) − ζ2t
(gt(z) − ζt)2

,
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which gives the existence of the complex derivative g′t(z) and shows holomorphicity (Property 1).
Similarly one finds a differential equation for gt(z) − gt(w), which shows that gt(z) ≠ gt(w)
when z ≠ w, which yields injectivity (Property 2). The surjectivity (Property 3) is obtained by
considering the Loewner flow backwards in time, which allows to solve for the equation gt(z) = w
with given w ∈ D: for times s ∈ [0, t], the backwards flow is hs ∶ D→ hs(D)

∂shs(w) = −hs(w)
hs(w) + ζt−s
hs(w) − ζt−s

, h0(w) = w,

and we have

gt(ht(w)) = w Ô⇒ z = ht(w).

For the chordal case, a detailed proof is given in [Kem17, Chapter 4.2.2].

Remark 4.4. We don’t know how the hulls Kt look like in general. It is very non-trivial to
try to show that Kt would be generated by a curve. This can be done in some situations, e.g.,
when ζ is 1/2-Hölder with Hölder norm strictly less than 4, see [MR05]. When ζ is given by a
one-dimensional Brownian motion, one can also prove that the obtained hulls are generated by
a continuous curve, but this is very technical, see [RS05].

4.3 Scaling limit of LERW: radial SLE

The upshot from Loewner’s theorems is that we can try to describe the sought scaling limit
curve γ in terms of a one-dimensional process ζt = exp(iWt), where W ∶ [0,∞) → R is chosen
suitably. It turns out that for the scaling limit of LERW (and any other model whose scaling
limit should satisfy conformal invariance and domain Markov property), W has to be a multiple
of Brownian motion (plus possibly a drift). Indeed, we expect that the following properties hold:

1. t↦Wt is continuous,

2. the increments Wt+s −Wt are independent (by the iteration idea and domain Markov prop-
erty) and stationary (only depend on s),

3. and there is an additional symmetry in law W ↔ −W .

A result in stochastic analysis shows that a process with properties 1 & 2 must have the
form [Kem17, Theorem 2.1]

Wt =
√
κBt + αt,

where B is a one-dimensional Brownian motion, κ ≥ 0, and α ∈ R. Property 3 then implies that
α = 0. Thus, it remains to determine the value of κ ≥ 0. This comes from a computation in the
proof of the scaling limit theorem, using properties of LERW. For other critical models we have
analogous results with other values of κ (the parameter κ is, loosely speaking, determined by
the universality class, or the conformal field theory associated to each critical model).

We only know from Loewner’s theorem that taking Wt =
√
κBt gives a family of growing

sets (Kt)t≥0 in the disc D. However, one can prove that these sets are generated by a curve in
the following sense.

Definition 4.5. We say that growing sets (Kt)t≥0 in the disc D are generated by a curve if there
exists a (continuous) curve γ ∶ [0,∞) → D such that for each time t ≥ 0, the set D ∖Kt is the
connected component of D ∖ γ[0, t] containing the origin.

Theorem 4.6 (Brownian motion generates SLE curve). The growing sets (Kt)t≥0 obtained from
solving the Loewner equation (LE) with Wt =

√
κBt are almost surely generated by a curve.
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Proof idea. For κ ≠ 8, this was proven by Rohde & Schramm [RS05] by an elaborate argument
relying on estimates for the derivative of the inverse conformal map g−1t near the driving function
ζt. This estimate breaks down when κ = 8, but the result still holds (this is just a limitation of
the proof). Lawler, Schramm & Werner proved that the case κ = 8 gives the scaling limit of the
Peano curve for the uniform spanning tree, and the proof in particular implies that the limiting
object is a curve. To date, there is no direct analytical proof4 for the case of κ = 8.

Definition 4.7. This random curve is called (radial) Schramm-Loewner evolution, SLE(κ). Its
law is denoted PD;1,0. It is defined in (D,1,0) by the radial Loewner chain driven by W =

√
κB,

and in any other simply connected domain (D,y0, x0) with a boundary point y0 ∈ ∂D and
an interior point x0 ∈ D, the SLE(κ) law PD,y0,x0 is defined via conformal invariance as the
pushforward φ∗ PD;1,0 by the conformal map φ ∶ D → D sending 1 to y0 = φ(1) and 0 to
x0 = φ(0).

Remark 4.8. Using properties of Bessel processes, one can show [RS05] that

▷ when 0 ≤ κ ≤ 4, the SLE(κ) curve is simple;

▷ when 4 < κ < 8, the SLE(κ) curve is not simple, nor space-filling;

▷ when κ ≥ 8, the SLE(κ) curve is space-filling.

It is also important to note that (with the parameterization by g′t(0) = et) the SLE(κ) curve
does indeed reach it target point: lim

t→∞
γ(t) =∶ γ(∞) = 0.

For convergence of curves, an appropriate topological space is the (Polish: complete separable
metric) space X(D;x0, y0) of all unparameterized curves in D from x0 to y0 with metric

dX (η, η̃) ∶= inf
ψ,ψ̃

sup
t∈[0,1]

∣η(ψ(t)) − η̃(ψ̃(t))∣,

where η, η̃ ∶ [0,1] →D are representatives of curves, and the infimum is taken over all reparam-
eterizations, that is, increasing bijections ψ, ψ̃ ∶ [0,1] → [0,1].

Theorem 4.9 (Scaling limit of LERW is SLE(2)). Let D be a simply connected domain. Con-
sider LERW γδ in Dδ = D ∩ δZ2 started from xδ0 and ending at yδ0 ∈ ∂Dδ, where xδ0 → x0 ∈ D
and yδ0 → y0 ∈ ∂D as δ → 0. Then, γδ → γ in distribution (weakly as probability measures on the
curve space X(D;x0, y0)), where the law of γ is the radial SLE(2) in D from x0 to y0.

We won’t go into details of the convergence. Let’s just make some comments:

▷ Radial SLE was introduced by Oded Schramm in 1999, and he also derived some properties
that the limit of LERW, if exists, has to satisfy (e.g., the limit must be a simple curve).
Theorem 4.9 was proven by Schramm with Lawler and Werner in 2001 [LSW04].

▷ The proof relies on properties of the underlying random walk and (discrete) harmonic func-
tions. It has two main steps:

1. Prove precompactness: there exists at least a subsequence that converges in X(D;x0, y0)
(or in some other topological space). This step uses a priori estimates ruling out patho-
logical behavior of the curves.5

2. Show that all convergent subsequences must converge to the same limit. This step uses
specific properties of the model (observable).

4There is a recent proof relying on the Gaussian free field [KMS21].
5In fact, the original proof goes in two steps: first establish precompactness for Loewner driving functions in

C([0,∞),S1
) with the uniform norm, and then strengthen the topology to the more geometric one in X(D;x0, y0)

with additional (crossing) estimates.
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5 Conformal restriction property for SLE(8/3)

For a given lattice model involving interfaces that should converge to conformally invariant curves
satisfying the domain Markov property, guessing the value of κ may not be easy. Rigorously, the
value comes from computations in the proofs, or sometimes there are special symmetries that can
be used to identify κ. One such case is κ = 8/3, which conjecturally corresponds to scaling limits
of self-avoiding walks (self-avoiding polymers). Let us consider self-avoiding nearest-neighbor
walks on the discretization Dδ ∶= D × δZ2 of the unit disc started from the origin and ending at
the boundary point 1 ∈ ∂Dδ. Since there are finitely many such walks, we can sample one at
random with weight µ−N , where N is the length of the walk and

µ = lim
N→∞

(#{self-avoiding walks in Dδ from 0 to 1 of length N})
1/N

is the so-called connective constant (on our case, associated to the square lattice). We will
call this model the self-avoiding walk (SAW). See the lecture notes [BDCGS12] for extensive
discussion on self-avoiding walks (the lecture notes are ten years old, but there haven’t been
many advances in the understanding of the SAW model in the past decade).

Conjecture 5.1 (Scaling limit of SAW is SLE(8/3)). The SAW random path γδ in Dδ started
from 0 and ending at 1 converges in distribution (weakly as probability measures on the curve
space X(D; 0,1)) in the scaling limit δ → 0 to γ, the radial SLE(8/3) in D from 0 to 1.

To date, there is no proof even for that there would exist convergent subsequences for SAW
in the curve space X(D; 0,1), or in any other curve space with weaker topology — nor has it
been shown that the driving functions of the curves γδ would converge even along a subsequence
in C([0,∞),S1) to ζ = exp(i

√
8/3B). On random lattices though, a proof is known [GM21].

To support the conjecture, let us consider the “conformal restriction property”, which is a
natural property that the discrete SAW path satisfies, and which should survive in the scaling
limit. It could be then used to perform the identification of the scaling limit, if one finds a
convergent subsequence. As a reference, see the textbook [Law05, Sections 6.4–6.5], and for
more discussion, e.g., Werner’s lecture notes [Wer05] and references therein.

5.1 Obstacles and restriction property

Recall that one way to characterize the law of a random set K is by determining all probabilities
that K doesn’t intersect an obstacle A. More precisely, let A denote the collection of obstacles,
that is, subsets A ⊂ D such that A is compact, A = A ∩D is compact, D∖A is simply connected,
and 0,1 ∉ A. For each obstacle A, let ΦA ∶ D ∖A → D be the unique conformal map such that
ΦA(0) = 0 and ΦA(1) = 1.

Consider random sets K ⊂ D such that K ∩ ∂D = {1}, 0 ∈ K, K is connected, and D ∖K is
connected, and such that they satisfy the following restriction property:

Definition 5.2 (Conformal restriction property). For any obstacle A ∈ A, the law of ΦA(K)
conditioned on the event {K ∩A = ∅} is the same as the law of K.

If one considers SAW on a discretization of the disc as above, this property is clearly sat-
isfied. Furthermore, one can prove that SLE(8/3) is the only simple SLE(κ) curve that has
the conformal restriction property. The chordal case was considered by Lawler, Schramm &
Werner [LSW03], and the radial case is discussed, e.g., in Lawler’s book [Law05]. Other simple
SLE(κ) curves also behave relatively nicely under the maps ΦA, but their laws become distorted
by a factor that is related to the conformal anomaly in conformal field theory (see Section 5.3
below for a very brief discussion and Werner’s lecture notes [Wer05, Chapter 5]).
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Figure 5.1: Illustration of the various maps: ΦAt ○ gt = g̃t ○ΦA. Here, ζt = ei
√
8/3Bt .

5.2 Restriction property for SLE(8/3)

Fix an obstacle A ∈ A. Let γ be an SLE(8/3) curve. We first want to study the probability of
the event {γ ∩A = ∅}. To this end, consider the image γ̃ = ΦA(γ). Let

τA ∶= inf{t ≥ 0 ∣ γ(t) ∈ A}

and write γ̃[0, t] = ΦA(γ[0, t]) when t < τA. Consider the following maps (see Figure 5.1):

▷ Recall that the Loewner conformal map gt ∶ D ∖ γ[0, t] → D is normalized as gt(0) = 0 and
g′t(0) = et > 0.

▷ Let g̃t ∶ D ∖ γ̃[0, t] → D be the conformal map such that g̃t(0) = 0 and g̃′t(0) = et > 0.

▷ Denote At ∶= gt(A), and let ΦAt ∶ D ∖ At → D be the conformal map such that ΦAt ○ gt =
g̃t ○ΦA. See Figure 5.1.

We can investigate P[γ∩A = ∅] by using a martingale. Recall that martingales are processes
(Mt)t≥0 such that, given the history up to time t, the conditional expectation of M observed at
time s ≥ t equals the present value Mt. The conditional probability that γ avoids A if we explore
γ up to time t is naturally a martingale. More precisely, the process

Mt ∶= E[1|{γ ∩A = ∅} ∣ γ[0, t]]

is a bounded martingale by construction, its initial value is just the sought probability

M0 = P[γ ∩A = ∅],

and it converges almost surely as t → ∞ to the random variable 1|{γ ∩A = ∅}. Moreover, the
conformal Markov property of γ shows that

Mt = PD;1,0[γ ∩A = ∅ ∣ γ[0, t]] = 1|{t < τA} PD∖γ[0,t];γ(t),0[γ ∩A = ∅]
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= 1|{t < τA} PD;1,0[γ ∩ (ft(A)) = ∅].
(Here, ft ∶ D ∖ γ[0, t] → D are the conformal maps normalized such that ft(0) = 0 = gt(0),
ft(γ(t)) = 1, and ∣f ′t(0)∣ = et = g′t(0).) It turns out that the right-hand side can be expressed in
terms of the derivative of the map ΦAt , and the formula is given in the next lemma.

Lemma 5.3. For any A ∈ A, the process

Mt = ∣Φ′At
(0)∣5/48 ∣Φ′At

(ei
√
8/3Bt)∣5/8, t ∈ [0, τA),

is a bounded martingale for SLE(8/3).
Proof idea. This is proven using Itô calculus. See [Law05, Section 6.5] for details.

Proposition 5.4. For any A ∈ A, the radial SLE(8/3) curve γ satisfies

P[γ ∩A = ∅] = ∣Φ′A(0)∣5/48 ∣Φ′A(1)∣5/8.
Proof idea. The left-hand side of the assertion equals

P[γ ∩A = ∅] = P[τA = ∞],
while the right-hand side of the assertion equals

M0 = ∣Φ′A(0)∣5/48 ∣Φ′A(1)∣5/8,
that is, the initial value of the bounded martingale M from Lemma 5.3. Moreover:

▷ If τA = ∞, then using the transience of the SLE curve (i.e., that γ(∞) = 0) one can prove
that

lim
t→∞

Φ′At
(ei
√
8/3Bt) = 1, lim

t→∞
Φ′At
(0) = 1, and thus lim

t→∞
Mt = 1.

▷ If τA < ∞, then one can prove that

lim
t→τA

Φ′At
(ei
√
8/3Bt) = 0, and thus lim

t→τA
Mt = 0.

Thus, we obtain using the martingale convergence theorem that

P[γ ∩A = ∅] = P[τA = ∞] = E[MτA] = E[M0] =M0,

which is what we sought to prove.

From the explicit formula for P[γ ∩A = ∅] from Proposition 5.4, we can verify the conformal
restriction property for SLE(8/3).
Theorem 5.5 (Conformal restriction property of SLE(8/3)). The radial SLE(8/3) curve γ
satisfies the property that, for any obstacle A ∈ A, the law of ΦA(γ) conditioned on the event
{γ ∩A = ∅} is the same as the law of γ.

Proof idea. Fix A ∈ A. Conditioned on the event {γ ∩A = ∅}, consider another obstacle C ∈ A
for the curve γ̃ = ΦA(γ). Using conformal invariance of SLE(8/3) and the formula from the
previous theorem, we have

P[γ̃ ∩C = ∅ ∣ γ ∩A = ∅] =
P[γ ∩Φ−1A (C) = ∅]

P[γ ∩A = ∅]

=
P[γ ∩ (D ∖ (Φ−1A ○Φ−1C )(D)) = ∅]

P[γ ∩A = ∅]

=
∣Φ′A(0)∣5/48 ∣Φ′C(0)∣5/48Φ′A(1)5/8Φ′C(1)5/8

∣Φ′A(0)∣5/48Φ′A(1)5/8

= ∣Φ′C(0)∣5/48Φ′C(1)5/8

= P[γ ∩C = ∅].
This proves the conformal restriction property.
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5.3 Restriction property fails for other simple SLE(κ) curves

Let now γ be an SLE(κ) curve for some κ ∈ (0,4]. Let’s consider the event {γ ∩A = ∅} in this
more general case, using the same maps as before (Figure 5.1).

Remark 5.6. For κ ≠ 8/3, the martingale M of Lemma 5.3 includes a non-trivial correction
term that doesn’t behave well in the calculation used in the proof of Theorem 5.5. Namely, the
process

Mt = ∣Φ′At
(0)∣i(κ) ∣Φ′At

(ei
√
κBt)∣h(κ) exp ( − c(κ)

6
∫

t

0
SΦAs(ei

√
κBs) ds), t ∈ [0, τA),

where6

i(κ) = (6 − κ)(κ − 2)
8κ

, h(κ) = 6 − κ
2κ

, c(κ) = (3κ − 8)(6 − κ)
2κ

,

and where SΦAs is the Schwarzian derivative defined as

Sf(z) = f
′′′(z)
f ′(z)

− 3

2
(f
′′(z)
f ′(z)

)
2

,

is a martingale (bounded when κ ≤ 8/3, that is, c(κ) ≤ 0). One can also show [Law05, Proposi-
tion 5.22] that the term involving the Schwarzian derivative can alternatively be written in terms
of the Brownian loop measure µloopD introduced by Lawler, Schramm & Werner [LSW03, LW04]7:

−1
3
∫

t

0
SΦAs(ei

√
κBs) ds = µloopD (γ[0, t],A)

is the measure of those Brownian loops in D that intersect both sets γ[0, t] and A. This term
is responsible of the failure of the conformal restriction property for simple SLE(κ) curves with
κ ≠ 8/3. See Werner’s lecture notes [Wer05] for more details.

Proposition 5.7 (Boundary perturbation for SLE). Let κ ∈ (0,4]. Fix an obstacle A ∈ A.
Then, radial SLE(κ) in D∖A from 1 to 0 is absolutely continuous with respect to radial SLE(κ)
in D from 1 to 0, with Radon-Nikodym derivative given by

dPD∖A;1,0

dPD;1,0 (γ) = 1|{γ ∩A = ∅}
exp ( − c(κ)

6 ∫
∞
0 SΦAs(ei

√
κBs) ds)

∣Φ′A(0)∣i(κ) ∣Φ′A(1)∣h(κ)

= 1|{γ ∩A = ∅}
exp ( c(κ)2 µloopD (γ[0,∞),A))
∣Φ′A(0)∣i(κ) ∣Φ′A(1)∣h(κ)

.

Proof idea. This is a well-known property in the chordal case, see for example [KL07, Proposi-
tion 3.1]. The same arguments can be used in the radial case.

6 Multiple SLE and applications to critical Ising model

Using the generalization of conformal restriction from Proposition 5.7, one gets an idea for
constructing “multiple SLEs”, which are candidates for scaling limits of multiple interfaces in
critical models — e.g., those appearing in Figure 1.2(right).

6The number h(κ) is the “boundary exponent” and i(κ) is the “interior exponent” [Law09]. The number c(κ)
is the central charge of the corresponding conformal field theory.

7The difference of 1/2 compared to [BPW21] is due to normalization conventions for Brownian loop measure.
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6.1 Multichordal SLE

Let D ⊊ C be a simply connected Jordan domain with 2N distinct points x1, x2, . . . , x2N ∈ ∂D
appearing in counterclockwise order along the boundary (called topological polygon). We consider
curves γ = (γ1, γ2, . . . , γN) in D each of which connects two points among {x1, x2, . . . , x2N}.
These curves can have various planar (non-crossing) connectivities, described in terms of planar
pair partitions (planar link patterns), that we write in the form

α = {{a1, b1}, . . . ,{aN , bN}} ∈ LPN ,

where {a1, b1, . . . , aN , bN} = {1,2, . . . ,2N}, and where LPN denotes the set of all such planar link
patterns. Note that for each fixed N ∈ N, the total number of planar link patterns is the Catalan
number CN = 1

N+1(
2N
N
) = #LPN . An example of (discrete) curves γ is obtained from interfaces

in the critical Ising model with alternating boundary conditions at the points x1, x2, . . . , x2N ,
see Figure 1.2. We wish to describe the scaling limits of these interfaces using SLE type curves.

Since the interfaces connect boundary-to-boundary (i.e., they are chords in the domain D),
we consider the chordal SLE(κ) obtained from the chordal Loewner chain, that is, the solution
(gt)t≥0 to the chordal Loewner equation given for each z ∈ H = {z ∈ C ∣ Im(z) ≥ 0} as

∂tgt(z) =
2

gt(z) −Wt
, g0(z) = z,

where Wt =
√
κBt, with B being the one-dimensional Brownian motion started at B0 = 0.

Similarly as for Theorem 4.3, (gt(z))t∈[0,Tz) is defined up to the swallowing time of the point z,

Tz ∶= sup{t ≥ 0 ∣ lim inf
s↗t

∣gs(z) −Ws∣ > 0} ∈ [0,+∞]

and gt ∶ H ∖Kt → H are conformal maps defined off Kt = {z ∈ H ∣ Tz ≤ t}. They satisfy the
normalization lim

z→∞
∣gt(z) − z∣ = 0, which determines them uniquely.

Analogously to Theorem 4.6, one can show [RS05] that for the driving function Wt =
√
κBt,

the growing sets (Kt)t≥0 are generated by a curve γ ∶ [0,∞) → H such that for each time t ≥ 0,
the set H ∖Kt is the unbounded connected component of H ∖ γ[0, t]. One can also prove that
the curve is transient, that is, lim

t→∞
γ(t) =∶ γ(∞) = ∞, which is a boundary point of H.

Definition 6.1. This random curve is called (chordal) Schramm-Loewner evolution, SLE(κ).
Its law is denoted PH;0,∞. It is defined in (H; 0,∞) by the chordal Loewner chain driven by
W =

√
κB, and in any other simply connected domain (D,x, y) with two distinct boundary

points x, y ∈ ∂D, the SLE(κ) law PD,x,y is defined via conformal invariance as the pushforward
φ∗ PH;0,∞ by any conformal map φ ∶ H→D sending 0 to x = φ(0) and∞ to y = φ(∞). (One can
check that the law PH;0,∞ is scale-invariant, which implies that the choice of φ doesn’t matter.)

▷ Let X 0(D;x, y) denote the set of continuous simple unparameterized curves in D connecting
x ∈ ∂D and y ∈ ∂D such that they only touch the boundary in {x, y}. When κ ≤ 4, the
chordal SLE(κ) curve belongs to this space almost surely [RS05, Zha08]8.

▷ For each link pattern α ∈ LPN , let Xα(D;x1, . . . , x2N) denote the set of families γ =
(γ1, . . . , γN) of pairwise disjoint curves such that γj ∈ X 0(D;xaj , xbj) for all j ∈ {1,2, . . . ,N}.

8Here we also need the reversibility property of chordal SLE: the SLE(κ) curve from x to y has the same law
as the SLE(κ) curve from y to x. This property is very non-trivial to prove. A proof for the case κ ≤ 4 was first
obtained by Zhan [Zha08].
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Definition 6.2 (Multichordal SLE, i.e., N -SLE). Let κ ∈ (0,4]. For N ≥ 2 and for any link
pattern α ∈ LPN , we call a probability measure on the families (γ1, . . . , γN) ∈ Xα(D;x1, . . . , x2N)
an N -SLE(κ) associated to α if for each j ∈ {1,2, . . . ,N}, the conditional law of the curve γj
given {γ1, γ2, . . . , γN} ∖ {γj} is the chordal SLE(κ) connecting xaj and xbj in the connected
component of the domain D ∖ ⋃

i≠j
γi containing the endpoints xaj and xbj of γj on its boundary.

Theorem 6.3. Let κ ∈ (0,4]. For any polygon (D;x1, . . . , x2N) and link pattern α ∈ LPN , there
exists a unique N -SLE(κ) associated to α.

Proof idea. This is proven (in full generality) in [BPW21]. The idea is a Markov chain coupling
argument, sampling at each step one curve from its conditional law given the other curves.
One can prove that such a Markov chain on the curve space Xα(D;x1, . . . , x2N) has a unique
stationary measure, that is the N -SLE(κ) associated to α.

Multichordal SLE(κ) is a family of SLE(κ) curves with interaction. It can be constructed as
follows [Law09]. Let Qκ

α denote the product measure of N independent chordal SLE(κ) curves
associated to the link pattern α. Denote by EQκ

α the expectation with respect to Qκ
α. Then,

the multichordal N -SLE(κ) probability measure Pκα on Xα(D;x1, . . . , x2N) can be obtained by
weighting Qκ

α with the Radon-Nikodym derivative9

Rκα(γ) =
dPκα
dQκ

α

(γ) ∶=
1|{γi ∩ γj = ∅ ∀i ≠ j} exp ( c(κ)2 mD(γ))

EQκ
α[1|{γi ∩ γj = ∅ ∀i ≠ j} exp ( c(κ)2 mD(γ))]

, (6.1)

where c(κ) = (3κ−8)(6−κ)2κ and mD(γ) is expressed in terms of the Brownian loop measure µloopD :
mD(γκ) ∶= 0 if N = 1, and

mD(γ) ∶=
N

∑
p=2

µloopD ({ℓ ∣ ℓ ∩ γi ≠ ∅ for at least p of the i ∈ {1, . . . ,N}}) if N ≥ 2.

One can prove that this is a conformally invariant quantity. See [Law09] for more details.

Definition 6.4. The pure partition functions of multiple SLE(κ) are defined in terms of the
total mass of the N -SLE(κ) measure:

Zα(D;x1, . . . , x2N) ∶= (
N

∏
j=1

PD(xaj , xbj))
h(κ)

×EQκ
α[1|{γi ∩ γj = ∅ ∀i ≠ j} exp (c(κ)

2
mD(γ))],

where h(κ) = 6−κ
2κ is the boundary exponent, PD(x, y) is the boundary Poisson kernel, that is

the unique conformally covariant function defined as

PD(x, y) ∶= ∣φ′(x)∣ ∣φ′(y)∣PH(φ(x), φ(y)), where PH(z,w) ∶= ∣w − z∣−2,

and where φ ∶ D → H is any conformal map.

The motivation for this definition comes, roughly, from considering chordal SLE(κ) as a
unnormalized (non-probability) measure on X 0(D;x, y), which satisfies the following analogue
of the boundary perturbation property [KL07, Proposition 3.1] (cf. Proposition 5.7):

Proposition 6.5 (Boundary perturbation for chordal SLE). Let κ ∈ (0,4]. Fix a compact set
A ⊂D such that A = A ∩D, the domain D ∖A is simply connected, and x, y ∉ A. Then, chordal

9The difference of 1/2 compared to [BPW21] is due to normalization conventions for Brownian loop measure.

21



SLE(κ) in D∖A from x to y is absolutely continuous with respect to chordal SLE(κ) in D from
x to y, with Radon-Nikodym derivative given by

dPD∖A;x,y

dPD;x,y
(γ) = 1|{γ ∩A = ∅}

exp ( c(κ)2 µloopD (γ[0,∞),A))
∣Φ′A(x)∣h(κ)∣Φ′A(y)∣h(κ)

, (6.2)

where ΦA ∶ D ∖A→D is any conformal map fixing x and y.

Indeed, using the definition of the Poisson kernel in (6.2), we have

dPD∖A;x,y

dPD;x,y
(γ) = 1|{γ ∩A = ∅}

exp ( c(κ)2 µloopD (γ[0,∞),A))
∣Φ′A(x)∣h(κ)∣Φ′A(y)∣h(κ)

= 1|{γ ∩A = ∅} ( PD(x, y)
PD∖A(x, y)

)
h(κ)

exp (c(κ)
2

µloopD (γ[0,∞),A))

and rearranging this, we obtain

(PD∖A(x, y))
h(κ)

dPD∖A;x,y(γ) = (PD(x, y))
h(κ)

exp (c(κ)
2

µloopD (γ[0,∞),A)) dPD;x,y(γ).

The total mass of the right-hand side appears as an ingredient in the construction of Zα. An
inclusion-exclusion argument gives the loop measure term mD(γ), see [Law09, PW19, BPW21].

Remark 6.6. Note that when κ < 8/3, we have c(κ) < 0, so the normalization factor in (6.1) is
clearly finite. Write

Φκ(γ) ∶=
κc(κ)

2
mD(γ).

Then, for all γ ∈ Xα(D;x1, . . . , x2N), as κ↘ 0, we have

Φκ(γ) = −
c(κ)κ
24

Φ0(γ) ↘ Φ0(γ) = −12mD(γ) < 0,

since −c(κ)κ↗ 24. This observation is useful when studying large deviations as κ↘ 0 later on.

Using the function Φκ, we can write the Radon-Nikodym derivative (6.1) in the form

Rκα(γ) =
exp ( 1κ Φκ(γ))

EQκ
α[ exp ( 1κ Φκ(γ))]

,

which looks sort of like a Bolzmann measure on curves.

6.2 Crossing probabilities in critical Ising model

Just like for a single interface (converging to SLE), one can also prove, or conjecture, that mul-
tiple interfaces in critical lattice models converge in the scaling limit to multiple SLE. As an
example, let us look at the critical Ising model with alternating boundary conditions, having
several “+” and “−” segments on the boundary (see Figure 1.2). Let xδ1, . . . , x

δ
2N be the boundary

points where the boundary conditions change between “+” and “−”. There are several macro-
scopic boundary-to-boundary interfaces (γδ1 , . . . , γδN). They may connect the boundary points in
various ways: for each α ∈ LPN , there is a positive chance that (γδ1 , . . . , γδN) have the connectivity
α. We are interested in the scaling limits of the interfaces and their connection probabilities.

To fix the setup, write Dδ ∶=D ∩ δZ2 and suppose that xδj → xj for each j. For the topology
on the curve space Xα(D;x1, . . . , x2N), we can just take

dX ((η1, . . . , ηN), (η̃1, . . . , η̃N)) ∶= max
1≤j≤N

dX (ηj , η̃j).
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Theorem 6.7. The following hold for the critical Ising model on (Dδ;xδ1, . . . , x
δ
2N) with alter-

nating boundary conditions:

1. [PW23, Theorem 1.1] For each link pattern α ∈ LPN the following convergence holds:

lim
δ→0

Pδ[ interfaces (γδ1 , . . . , γδN) form connectivity α ] = Zα(D;x1, . . . , x2N)
∑β∈LPN

Zβ(D;x1, . . . , x2N)
, (6.3)

where {Zα ∣ α ∈ LPN} are the pure partition functions of multiple SLE(κ) with κ = 3.

2. [BPW21, Proposition 1.3]

▷ Let α ∈ LPN . Then, as δ → 0, conditionally on the event that they form the connectivity
α, the law of the collection of critical Ising interfaces converges weakly to the N -SLE(3)
associated to α.

▷ In particular, as δ → 0, the law of a single curve in this collection connecting two points
xj and xα(j), where {j, α(j)} ∈ α, converges weakly to a conformal image of the Loewner
chain whose driving function W in the upper half-plane H is given by the SDEs

⎧⎪⎪⎨⎪⎪⎩

dWt =
√
3dBt + 3∂j logZα(H; gt(x1), . . . , gt(xj−1),Wt, gt(xj+1), . . . , gt(x2N))dt,

dgt(xi) = 2dt
gt(xi)−Wt

, for i ≠ j,

with initial values W0 = xj, and g0(xi) = xi for i ≠ j.

3. [Izy15, Theorem 3.1], [Izy17, Theorem 1.1], and [PW23, Theorem 4.1 & Proposition 5.1]

As δ → 0, the law of a single curve in the collection of critical Ising interfaces starting from
xj converges weakly to a conformal image of the Loewner chain whose driving function W
in the upper half-plane H is given by the SDEs

⎧⎪⎪⎪⎨⎪⎪⎪⎩

dWt =
√
3dBt + 3∂j log (∑β∈LPN

Zβ(H; gt(x1), . . . , gt(xj−1),Wt, gt(xj+1), . . . , gt(x2N)))dt,
dgt(xi) = 2dt

gt(xi)−Wt
, for i ≠ j,

(6.4)

with initial values W0 = xj, and g0(xi) = xi for i ≠ j. This curve terminates almost surely
at one of the marked points xℓ, where ℓ has different parity than j.

Remark 6.8. In the first nontrivial case of N = 2, the crossing formula (6.3) was predicted
by Arguin & Saint-Aubin [ASA02] (this is an analogue of Cardy’s formula for critical Bernoulli
percolation): the pure partition functions in this case are given by

Z (H;x1, x2, x3, x4) =
2Γ(4/3)

Γ(8/3)Γ(5/3)
((x2 − x1)(x4 − x3)
(x4 − x2)(x3 − x1)

)
2/3

2F1 (43 ,−
1
3 ,

8
3 ;
(x2−x1)(x4−x3)
(x4−x2)(x3−x1))

(x4 − x1)(x3 − x2)

Z (H;x1, x2, x3, x4) =
2Γ(4/3)

Γ(8/3)Γ(5/3)
((x4 − x1)(x3 − x2)
(x4 − x2)(x3 − x1)

)
2/3

2F1 (43 ,−
1
3 ,

8
3 ;
(x4−x1)(x3−x2)
(x4−x2)(x3−x1))

(x2 − x1)(x4 − x3)
,

for x1 < x2 < x3 < x4, where = {{1,2},{3,4}} and = {{1,4},{2,3}} are the two
possible link patterns. These formulas and certain other special cases appear in [BBK05, Izy15].
In general, explicit formulas for the probability amplitudes Zα are not known when κ = 3.

Proof idea for items 2 & 3. The convergence of one critical Ising interface (N = 1) was summa-
rized in [CDCH+14], based on Smirnov’s ideas. This is established in two steps.
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▷ First, one proves that the sequence (γδ)δ>0 of lattice interfaces on Dδ is relatively compact
in the space X of curves. Thus, one deduces that there exist convergent subsequences as
δ → 0. For the Ising model, the relative compactness is established using topological crossing
estimates, see in particular [KS17].

▷ Second, one has to prove that all of the subsequences in fact converge to a unique limit,
identified as the chordal SLE(κ) with κ = 3. For the identification of the limit, Smirnov used
a discrete holomorphic martingale observable [Smi06, Smi10], that is, a solution to a discrete
boundary value problem on Dδ, converging as δ → 0 to the solution of the corresponding
boundary value problem on D. Using the martingale observable, he identified the Loewner
driving function of the scaling limit curve as

√
3Bt.

For multiple curves, the relative compactness follows from the one-curve case [Kar19, Wu20].
For the identification, one can use either a multipoint discrete holomorphic observable, as was
done for item 3 in [Izy15, Izy17], or the classification of multiple SLE probability measures by
the Markov chain argument done for item 2 in [BPW21].

Proof idea for item 1. Denote the random connectivity of the interfaces (γδ1 , . . . , γδN) by ϑδ. We
prove the claim by induction on N ≥ 1 and using a standard martingale argument in SLE theory.
The claim is trivial for N = 1 because both sides of (6.3) equal one. Thus, we assume that the
claim holds for N − 1, fix α ∈ LPN and aim to prove the claim for Pδ[ϑδ = α]. The probabilities
(Pδ[ϑδ = α])δ>0 form a sequence of numbers in [0,1], so there is always a subsequential limit.
To show (6.3), it hence suffices to prove that

lim
n→∞

Pδn[ϑδn = α] = Zα(D;x1, . . . , x2N)
∑β∈LPN

Zβ(D;x1, . . . , x2N)

for any convergent subsequence.
Note that the link pattern α contains at least one link of type {j, j + 1}. For definiteness,

we assume that j = 1, so {1,2} ∈ α. Let us also assume that D = H. Item 3 says that the curve
γδn1 converges (weakly) to γ1, given by the Loewner chain whose driving function satisfies the
SDEs (6.4). We may couple the curves (by the Skorohod representation theorem) into the same
probability space so that they converge almost surely.

First, let us analyze the limit curve γ1. One can prove that the ratio

Mt ∶=
Zα(Wt, gt(x2), . . . , gt(x2N))

∑β∈LPN
Zβ(Wt, gt(x2), . . . , gt(x2N))

is a bounded martingale. Let us consider the limit of Mt as

t→ T ∶=min
i≠1

Txi ∈ (0,+∞],

upon the first time when the curve γ1 swallows one of the other marked points (that is, the
blow-up time of the Loewner equation). Denote by Hγ1 the unbounded connected component
of H ∖ γ1[0, T ], and by α̂ = α ∖ {1,2} ∈ LPN−1 the sought connectivity of the remaining curves
(γ2, . . . , γN).

▷ On the (good) event {γ1(T ) = x2}, one can prove that almost surely,

Mt = (
Zα(Wt, gt(x2), . . . , gt(x2N))

Z (Wt, gt(x2))
)( Z (Wt, gt(x2))
∑β∈LPN

Zβ(Wt, gt(x2), . . . , gt(x2N))
)

t→TÐ→ Zα̂(gT (x3), . . . , gT (x2N))
∑β∈LPN−1

Zβ(gT (x3), . . . , gT (x2N))
=

Zα̂(Hγ1 ;x3, . . . , x2N)
∑β∈LPN−1

Zβ(Hγ1 ;x3, . . . , x2N)
.
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▷ On the other hand, for each ℓ ∈ {2,3, . . . ,N}, on the (bad) event {γ1(T ) = x2ℓ}, one can
show that almost surely

Mt =
Zα(Wt, gt(x2), . . . , gt(x2N))

∑β∈LPN
Zβ(Wt, gt(x2), . . . , gt(x2N))

t→TÐ→ 0.

Applying the optional stopping theorem to the bounded martingale M gives the identity

M0 =
Zα(x1, . . . , x2N)

∑β∈LPN
Zβ(x1, . . . , x2N)

= E [1|{γ1(T ) = x2}
Zα̂(Hγ1 ;x3, . . . , x2N)

∑β∈LPN−1
Zβ(Hγ1 ;x3, . . . , x2N)

] = E[MT ]. (6.5)

Next, let us consider the discrete interface γδn1 . On the event {γδn1 (T
δn) = xδn2 }, we denote

by Hδn the connected component of of the complement of γδn1 with xδn3 , . . . , x
δn
2N on its bound-

ary. Using the domain Markov property of the Ising model, the induction hypothesis, and the
conformal invariance of the right-hand side of (6.3) and the conformal invariance of the SLE(3)
type curve γ, we find that

Eδn[1|{ϑδn = α} ∣γδn1 ] = 1|{γδn1 (T
δn) = xδn2 } E

δn[1|{ϑ̂δn = α̂} ∣γδn1 ]
= 1|{γδn1 (T

δn) = xδn2 } P̂
δn[ϑ̂δn = α̂]

n→∞Ð→ 1|{γ(T ) = x2}
Zα̂(Hγ1 ;x3, . . . , x2N)

∑β∈LPN−1
Zβ(Hγ1 ;x3, . . . , x2N)

, (6.6)

where P̂δn is the law of the Ising interfaces on the random polygon (Hδn ;xδn3 , . . . , x
δn
2N), measur-

able with respect to γδn1 , which form a random connectivity pattern ϑ̂δn ∈ LPN−1 (and where,
by the Skorohod representation theorem, we couple all of the random variables on the same
probability space so that the convergence takes place almost surely). Thus, we conclude (using
the bounded convergence theorem) that

lim
n→∞

Pδn[ϑδn = α] = lim
n→∞

Eδn[1|{γδn1 (T
δn) = xδn2 } E

δn[1|{ϑδn = α} ∣γδn1 ]] [by tower property]

= E [1|{γ1(T ) = x2}
Zα̂(Hγ1 ;x3, . . . , x2N)

∑β∈LPN−1
Zβ(Hγ1 ;x3, . . . , x2N)

] [by (6.6)]

= Zα(x1, . . . , x2N)
∑β∈LPN

Zβ(x1, . . . , x2N)
. [by (6.5)]

This completes the induction step and finishes the proof.

7 Large deviation principle (LDP) for SLE(κ) as κ→ 0+

When κ is small, the SLE(κ) curves tend to be relatively straight, but still fractal. In the
limit κ → 0, the SLE(κ) probability measure on the curve space X concentrates on an atomic
measure supported on the unique hyperbolic geodesic connecting the two endpoints of the curve.
To make this precise, let us consider the chordal case.

7.1 Large deviation principle

Intuitively, for a given reference curve γ in D connecting two boundary points x, y ∈ ∂D, we
expect a limiting behavior (large deviation principle,“LDP”) of type

“ P[SLE(κ) in (D;x, y) stays close to γ] κ→ 0+≈ exp ( −
ID;x,y(γ)

κ
) ”,
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where ID;x,y is a conformally invariant quantity called Loewner energy of the curve γ:

ID;x,y(γ) ∶= IH;0,∞(φ(γ)) ∶=
1

2
∫
∞

0
∣W ′(t)∣2 dt,

where W is the Loewner driving function of φ(γ), that is the image of γ under any conformal
map φ ∶ D → H sending x and y respectively to 0 and ∞. Note that the right-hand side is the
Dirichlet energy of W . The Loewner energy of a chord is not always finite.

As our reference domain, let us choose D = D. For each link pattern α ∈ LPN , we endow the
curve space Xα = Xα(D;x1, . . . , x2N) ⊂ ∏j X 0(D;xaj , xbj) with the product topology induced by
the Hausdorff metric. We will state the LDP for an arbitrary number of chordal curves. For
this, we need to also define the multichord energy:

IαD(γ) ∶= (
N

∑
j=1

ID;xaj ,xbj (γj) + 12mD(γ)) − inf
γ∈Xα

(
N

∑
j=1

ID;xaj ,xbj (γj) + 12mD(γ)) ∈ [0,+∞].

Theorem 7.1. The family of laws (Pκα)κ>0 of the multichordal SLE(κ) curves γκ satisfies LDP
in Xα with good rate function IαD , that is, for any closed subset F and open subset O of Xα, we
have

lim sup
κ→0+

κ logPκα[γκ ∈ F ] ≤ − inf
γ∈F

IαD(γ),

lim inf
κ→0+

κ logPκα[γκ ∈ O] ≥ − inf
γ∈O

IαD(γ),

IαD is lower semicontinuous, and its level set (IαD)
−1[0, c] is compact for any c ≥ 0.

Proof idea. See [PW24, Theorem 1.5]. The strategy is as follows:

▷ The case of N = 1 is proven using Schilder’s theorem for Brownian motion.

▷ To get the case N ≥ 2 and to understand the meaning of the various terms in the Loewner
energy IαD , recall that Qκ

α denotes the product measure of N independent chordal SLE(κ)
curves associated to the link pattern α, and the multichordal N -SLE(κ) probability measure
Pκα on Xα can be obtained by weighting Qκ

α with the Radon-Nikodym derivative (6.1). Using
the case of N = 1, the probability measures (Qκ

α)κ>0 of independent SLEs satisfy a LDP
with rate function just the sum of the independent rate functions,

Iα0 (γ) ∶=
N

∑
j=1

ID;xaj ,xbj (γj).

From this and the Radon-Nikodym derivative (6.1), we can get to the asserted result by
using a tool from large deviations theory (see, e.g., [DZ10, Lemmas 4.3.4 and 4.3.6])):

Lemma 7.2 (Varadhan’s lemma). Suppose that the probability measures (Qκ)κ>0 satisfy a
LDP with good rate function Iα0 . Let Φ ∶ ∏j X 0(D;xaj , xbj) → R be a function bounded from
above. Then, the following hold.

1. If Φ is upper semicontinuous, then for any closed subset F of ∏j X 0(D;xaj , xbj),

lim sup
κ→0

κ logEκ[ exp (1
κ
Φ(γκ))1|{γκ ∈ F}] ≤ − inf

γ∈F
(Iα0 (γ) −Φ(γ)).

2. If Φ is lower semicontinuous, then for any open subset O of ∏j X 0(D;xaj , xbj),

lim inf
κ→0

κ logEκ[ exp (1
κ
Φ(γκ))1|{γκ ∈ O}] ≥ − inf

γ∈O
(Iα0 (γ) −Φ(γ)).
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Using the case of one curve, Varadhan’s lemma, and teh construction of multichordal
SLE(κ), it is straightforward to derive the LDP for multichordal case, see [PW24, Theo-
rem 5.11] for details. One mainly has to derive some estimates to get rid of the κ-dependence
in the function Φκ(γ)) in Remark 6.6.

In the limit κ → 0+ the multichordal SLE(κ) concentrates on minimizers of the energy. In
fact, for each connectivity pattern α, there is a unique minimizer (as we will see below).

Corollary 7.3. As κ→ 0+, the multichordal SLE(κ) in (D;x1, . . . , x2N) associated to α ∈ LPN
converges in probability to the unique minimizer of the Loewner energy IαD in Xα.

Proof idea. Suppose η is the unique minimizer of IαD (due to Theorem 7.4 below). Let Bε(η) ⊂ Xα
be a Hausdorff-open ball of radius ε > 0 around η. Then, we have

lim sup
κ→0+

κ logPκ[γκ ∈ Xα ∖Bε(η)] ≤ − inf
γ∈Xα∖Bε(η)

IαD(γ) < 0.

This shows the convergence in probability.

7.2 Finding minimizers of Loewner energy

The unique minimizer η = (η1, . . . , ηN) will have the following property: each ηj is the hyperbolic
geodesic10, that is, SLE(0), between the points xaj , xbj in the connected component of D∖⋃i≠j ηi
containing ηj . We call a multichord η with this property a geodesic multichord.

Theorem 7.4. There exists a unique geodesic multichord η in Xα for each α. This multichord
η is the unique minimizer of IαD .

Proof idea. See [PW24, Theorem 1.1 and Corollary 1.6]. The strategy is as follows:

▷ From the proof of the LDP (Theorem 7.1), we know that the Loewner energy IαD is lower
semicontinuous, which implies that there exist minimizers for it.

▷ One can show that any minimizer of IαD is a geodesic multichord. This follows by induction:
when N = 1, there is just one hyperbolic geodesic, SLE(0), and properties of IαD with respect
to changing N to N + 1 can be used to check that the geodesic multichord property holds
for all N . See [PW24, Corollary 3.9].

▷ Lastly, we have to show that there are no other geodesic multichords. This is a consequence
of the following algebraic result (that holds on H) and conformal invariance (to get to D):
each geodesic multichord gives rise to a unique rational function with a given set of 2N
critical points. See [PW24, Theorem 1.2].

▷ To conclude, it remains to classify these rational functions. From algebraic geometry [Gol91]
we know that there are at most CN = 1

N+1(
2N
N
) of them (up to post-composition by a Möbius

transformation of the Riemann sphere). Since CN is also the number of N -link patterns,
this yields the uniqueness.

Theorem 7.5. Let η be a geodesic multichord in Xα(H;x1, . . . , x2N). The union of η, its complex
conjugate, and the real line is the real locus of a real rational function of degree N +1 with critical
points {x1, . . . , x2N}.

Proof idea. This result is constructive, using Riemann mapping theorem and Schwarz reflection
across the curves ηj to obtain the sought rational function. See [PW24, Theorem 1.2].

10A hyperbolic geodesic in (D;x, y) is the image of [−1,1] by a conformal map φ ∶ D → D such that φ(1) = x
and φ(−1) = y.
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As a by-product, we obtain an analytic proof of the Shapiro conjecture in real enumerative
geometry (first proved by Eremenko & Gabrielov [EG02]): if all critical points of a rational
function are real, then the function is real up to post-composition by a Möbius transformation.
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